The Research Foundation Review 2015 summarizes the offerings from the CFA Institute Research Foundation over the past year—monographs, literature reviews, workshop presentations, and other relevant material.
At the request of the Advisory Committee for Geosciences of the National Science Foundation (NSF), a review of the Geospace Section of the NSF Division of Atmospheric and Geospace Sciences was undertaken in 2015. The Portfolio Review Committee was charged with reviewing the portfolio of facilities, research programs, and activities funded by Geospace Section and to recommend critical capabilities and the balance of investments needed to enable the science program articulated in the 2013 NRC decadal survey Solar and Space Physics: A Science for a Technological Society. The Portfolio Review Committee's report Investments in Critical Capabilities for Geospace Science 2016 to 2025 (ICCGS) was accepted by the Advisory Committee for Geosciences in April 2016. Assessment of the National Science Foundation's 2015 Geospace Portfolio Review provides an independent assessment of the ICCGS report. This publication assesses how well the ICCGS provides a clear set of findings, conclusions, and recommendations for Geospace Section that align with the science priorities of the NRC decadal survey, and adequately take into account issues such as the current budget outlook and the science needs of the community. Additionally, this study makes recommendations focused on options and considerations for NSF's implementation of the ICCGS recommendations.
The Research Foundation Review 2016 summarizes the offerings from the CFA Institute Research Foundation over the past year—monographs, literature reviews, workshop presentations, and other relevant material.
The original charter of the Space Science Board was established in June 1958, three months before the National Aeronautics and Space Administration (NASA) opened its doors. The Space Science Board and its successor, the Space Studies Board (SSB), have provided expert external and independent scientific and programmatic advice to NASA on a continuous basis from NASA's inception until the present. The SSB has also provided such advice to other executive branch agencies, including the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), the U.S. Geological Survey (USGS), the Department of Defense, as well as to Congress. Space Studies Board Annual Report 2017 covers a message from the chair of the SSB, David N. Spergel. This report also explains the origins of the Space Science Board, how the Space Studies Board functions today, the SSB's collaboration with other National Academies of Sciences, Engineering, and Medicine units, assures the quality of the SSB reports, acknowledges the audience and sponsors, and expresses the necessity to enhance the outreach and improve dissemination of SSB reports. This report will be relevant to a full range of government audiences in civilian space research - including NASA, NSF, NOAA, USGS, and the Department of Energy, as well members of the SSB, policy makers, and researchers.
The US food and agriculture sector is innovative, competitive and export-oriented. Maintaining high productivity growth in light of changes in national and global demand, while improving the sustainable use of resources, will nonetheless require further innovation.
Economists broadly define financial asset price bubbles as episodes in which prices rise with notable rapidity and depart from historically established asset valuation multiples and relationships. Financial economists have for decades attempted to study and interpret bubbles through the prisms of rational expectations, efficient markets, and equilibrium, arbitrage, and capital asset pricing models, but they have not made much if any progress toward a consistent and reliable theory that explains how and why bubbles (and crashes) evolve and can also be defined, measured, and compared. This book develops a new and different approach that is based on the central notion that bubbles and crashes reflect urgent short-side rationing, which means that, as such extreme conditions unfold, considerations of quantities owned or not owned begin to displace considerations of price.
Economists broadly define financial asset price bubbles as episodes in which prices rise with notable rapidity and depart from historically established asset valuation multiples and relationships. Financial economists have for decades attempted to study and interpret bubbles through the prisms of rational expectations, efficient markets, equilibrium, arbitrage, and capital asset pricing models, but they have not made much if any progress toward a consistent and reliable theory that explains how and why bubbles (and crashes) evolve and are defined, measured, and compared. This book develops a new and different approach that is based on the central notion that bubbles and crashes reflect urgent short-side rationing, which means that, as such extreme conditions unfold, considerations of quantities owned or not owned begin to displace considerations of price.
Following a remarkable transformation in the past century in research and innovation, in particular through the development of new technologies and processes in sectors such as oil and gas, shipbuilding and also fisheries and aquaculture.
This report applies the 2017 Recommendation of the Council on Public Integrity, assessing: Mexico’s evolving public integrity system; the extent to which new reforms cultivate a culture of integrity across the public sector; and the effectiveness of increasingly stringent accountability mechanisms.
Engineering Design and Mathematical Modelling: Concepts and Applications consists of chapters that span the Engineering design and mathematical modelling domains. Engineering design and mathematical modelling are key tools/techniques in the Science, Technology and Innovation spheres. Whilst engineering design is concerned with the creation of functional innovative products and processes, mathematical modelling seeks to utilize mathematical principles and concepts to describe and control real world phenomena. Both of these can be useful tools for spurring and hastening progress in developing countries. They are also areas where Africa needs to ‘skill-up’ in order to build a technological base. The chapters in this book cover the relevant research trends in the fields of both engineering design and mathematical modelling. This book was originally published as a special issue of the African Journal of Science, Technology, Innovation and Development.