Representations of Finite-Dimensional Algebras

Representations of Finite-Dimensional Algebras

Author: Peter Gabriel

Publisher: Springer Science & Business Media

Published: 1992-10-08

Total Pages: 190

ISBN-13: 9783540537328

DOWNLOAD EBOOK

From the reviews: "... [Gabriel and Roiter] are pioneers in this subject and they have included proofs for statements which in their opinions are elementary, those which will help further understanding and those which are scarcely available elsewhere. They attempt to take us up to the point where we can find our way in the original literature. ..." --The Mathematical Gazette


Representation Theory of Artin Algebras

Representation Theory of Artin Algebras

Author: Maurice Auslander

Publisher: Cambridge University Press

Published: 1997-08-21

Total Pages: 444

ISBN-13: 9780521599238

DOWNLOAD EBOOK

This book is an introduction to the contemporary representation theory of Artin algebras, by three very distinguished practitioners in the field. Beyond assuming some first-year graduate algebra and basic homological algebra, the presentation is entirely self-contained, so the book is suitable for any mathematicians (especially graduate students) wanting an introduction to this active field.'...written in a clear comprehensive style with full proofs. It can very well serve as an excellent reference as well as a textbook for graduate students.' EMS Newletter


Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry

Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry

Author: Vlastimil Dlab

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 502

ISBN-13: 0821834169

DOWNLOAD EBOOK

These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ``instructional'' workshop preceding the conference, there were also workshops on ``Commutative Algebra, Algebraic Geometry and Representation Theory'', ``Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ``Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.


Representation Theory of Algebras

Representation Theory of Algebras

Author: Raymundo Bautista

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 780

ISBN-13: 9780821803950

DOWNLOAD EBOOK

The ICRA VII was held at Cocoyoc, Mexico, in August 1994. This was the second time that the ICRA was held in Mexico: ICRA III took place in Puebla in 1980. The 1994 conference included 62 lectures, all listed in these Proceedings. Not all contributions presented, however, appear in this book. Most papers in this volume are in final form with complete proofs, with the only exception being the paper of Leszczynski and Skowronski, Auslander algebras of tame representation type, that the editors thought useful to include.


Algebras and Representation Theory

Algebras and Representation Theory

Author: Karin Erdmann

Publisher: Springer

Published: 2018-09-07

Total Pages: 304

ISBN-13: 3319919989

DOWNLOAD EBOOK

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.


Tilting in Abelian Categories and Quasitilted Algebras

Tilting in Abelian Categories and Quasitilted Algebras

Author: Dieter Happel

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 103

ISBN-13: 0821804448

DOWNLOAD EBOOK

We generalize tilting with respect to a tilting module of projective dimension at most one for an Artin algebra to tilting with respect to a torsion pair in an Abelian category. Our construction is motivated by the connection between tilting and derived categories. We develop a general theory for such tilting, and are led to a generalization of tilting algebras which we call quasitilted algebras. This class also contains the canonical algebras, and we show that the quasitilted algebras are characterized by having global dimension at most two and each indecomposable module having projective dimension at most one or injective dimension at most one. We also give other characterizations of quasitilted algebras, and give methods for constructing such algebras.


Introduction to Representation Theory

Introduction to Representation Theory

Author: Pavel I. Etingof

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 240

ISBN-13: 0821853511

DOWNLOAD EBOOK

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.


A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory

Author: Peter Webb

Publisher: Cambridge University Press

Published: 2016-08-19

Total Pages: 339

ISBN-13: 1107162394

DOWNLOAD EBOOK

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.