Representation and Productive Ambiguity in Mathematics and the Sciences

Representation and Productive Ambiguity in Mathematics and the Sciences

Author: Emily R. Grosholz

Publisher: Oxford University Press

Published: 2007-08-30

Total Pages: 332

ISBN-13: 0199299730

DOWNLOAD EBOOK

Emily Grosholz offers an original investigation of demonstration in mathematics and science, examining how it works and why it is persuasive. Focusing on geometrical demonstration, she shows the roles that representation and ambiguity play in mathematical discovery. She presents a wide range of case studies in mechanics, topology, algebra, logic, and chemistry, from ancient Greece to the present day, but focusing particularly on the seventeenth and twentieth centuries. She argues that reductive methods are effective not because they diminish but because they multiply and juxtapose modes of representation. Such problem-solving is, she argues, best understood in terms of Leibnizian 'analysis' - the search for conditions of intelligibility. Discovery and justification are then two aspects of one rational way of proceeding, which produces the mathematician's formal experience. Grosholz defends the importance of iconic, as well as symbolic and indexical, signs in mathematical representation, and argues that pragmatic, as well as syntactic and semantic, considerations are indispensable for mathematical reasoning. By taking a close look at the way results are presented on the page in mathematical (and biological, chemical, and mechanical) texts, she shows that when two or more traditions combine in the service of problem solving, notations and diagrams are sublty altered, multiplied, and juxtaposed, and surrounded by prose in natural language which explains the novel combination. Viewed this way, the texts yield striking examples of language and notation that are irreducibly ambiguous and productive because they are ambiguous. Grosholtz's arguments, which invoke Descartes, Locke, Hume, and Kant, will be of considerable interest to philosophers and historians of mathematics and science, and also have far-reaching consequences for epistemology and philosophy of language.


Humanizing Mathematics and its Philosophy

Humanizing Mathematics and its Philosophy

Author: Bharath Sriraman

Publisher: Birkhäuser

Published: 2017-11-07

Total Pages: 357

ISBN-13: 331961231X

DOWNLOAD EBOOK

This Festschrift contains numerous colorful and eclectic essays from well-known mathematicians, philosophers, logicians, and linguists celebrating the 90th birthday of Reuben Hersh. The essays offer, in part, attempts to answer the following questions set forth by Reuben himself as a focus for this volume: Can practicing mathematicians, as such, contribute anything to the philosophy of math? Can or should philosophers of math, as such, say anything to practicing mathematicians? Twenty or fifty years from now, what will be similar, and what will, or could, or should be altogether different: About the philosophy of math? About math education? About math research institutions? About data processing and scientific computing? The essays also offer glimpses into Reuben’s fertile mind and his lasting influence on the mathematical community, as well as revealing the diverse roots, obstacles and philosophical dispositions that characterize the working lives of mathematicians. With contributions from a veritable “who’s who” list of 20th century luminaries from mathematics and philosophy, as well as from Reuben himself, this volume will appeal to a wide variety of readers from curious undergraduates to prominent mathematicians.


99 Variations on a Proof

99 Variations on a Proof

Author: Philip Ording

Publisher: Princeton University Press

Published: 2021-10-19

Total Pages: 272

ISBN-13: 0691218978

DOWNLOAD EBOOK

An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo—whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp—Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau’s Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird’s-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.


Starry Reckoning: Reference and Analysis in Mathematics and Cosmology

Starry Reckoning: Reference and Analysis in Mathematics and Cosmology

Author: Emily Rolfe Grosholz

Publisher: Springer

Published: 2016-11-25

Total Pages: 202

ISBN-13: 3319466909

DOWNLOAD EBOOK

This book deals with a topic that has been largely neglected by philosophers of science to date: the ability to refer and analyze in tandem. On the basis of a set of philosophical case studies involving both problems in number theory and issues concerning time and cosmology from the era of Galileo, Newton and Leibniz up through the present day, the author argues that scientific knowledge is a combination of accurate reference and analytical interpretation. In order to think well, we must be able to refer successfully, so that we can show publicly and clearly what we are talking about. And we must be able to analyze well, that is, to discover productive and explanatory conditions of intelligibility for the things we are thinking about. The book’s central claim is that the kinds of representations that make successful reference possible and those that make successful analysis possible are not the same, so that significant scientific and mathematical work typically proceeds by means of a heterogeneous discourse that juxtaposes and often superimposes a variety of kinds of representation, including formal and natural languages as well as more iconic modes. It demonstrates the virtues and necessity of heterogeneity in historically central reasoning, thus filling an important gap in the literature and fostering a new, timely discussion on the epistemology of science and mathematics.


Fuzzy Pictures as Philosophical Problem and Scientific Practice

Fuzzy Pictures as Philosophical Problem and Scientific Practice

Author: Jordi Cat

Publisher: Springer

Published: 2016-11-21

Total Pages: 192

ISBN-13: 3319471902

DOWNLOAD EBOOK

This book presents a comprehensive discussion on the characterization of vagueness in pictures. It reports on how the problem of representation of images has been approached in scientific practice, highlighting the role of mathematical methods and the philosophical background relevant for issues such as representation, categorization and reasoning. Without delving too much into the technical details, the book examines and defends different kinds of values of fuzziness based on a complex approach to categorization as a practice, adopting conceptual and empirical suggestions from different fields including the arts. It subsequently advances criticisms and provides suggestions for interpretation and application. By describing a cognitive framework based on fuzzy, rough and near sets, and discussing all of the relevant mathematical and philosophical theories for the representation and processing of vagueness in images, the book offers a practice-oriented guide to fuzzy visual reasoning, along with novel insights into the field of interpreting and thinking with fuzzy pictures and fuzzy data.


Models and Inferences in Science

Models and Inferences in Science

Author: Emiliano Ippoliti

Publisher: Springer

Published: 2016-01-27

Total Pages: 256

ISBN-13: 3319281631

DOWNLOAD EBOOK

The book answers long-standing questions on scientific modeling and inference across multiple perspectives and disciplines, including logic, mathematics, physics and medicine. The different chapters cover a variety of issues, such as the role models play in scientific practice; the way science shapes our concept of models; ways of modeling the pursuit of scientific knowledge; the relationship between our concept of models and our concept of science. The book also discusses models and scientific explanations; models in the semantic view of theories; the applicability of mathematical models to the real world and their effectiveness; the links between models and inferences; and models as a means for acquiring new knowledge. It analyzes different examples of models in physics, biology, mathematics and engineering. Written for researchers and graduate students, it provides a cross-disciplinary reference guide to the notion and the use of models and inferences in science.


Great Circles

Great Circles

Author: Emily Rolfe Grosholz

Publisher: Springer

Published: 2018-11-13

Total Pages: 275

ISBN-13: 3319982311

DOWNLOAD EBOOK

This volume explores the interaction of poetry and mathematics by looking at analogies that link them. The form that distinguishes poetry from prose has mathematical structure (lifting language above the flow of time), as do the thoughtful ways in which poets bring the infinite into relation with the finite. The history of mathematics exhibits a dramatic narrative inspired by a kind of troping, as metaphor opens, metonymy and synecdoche elaborate, and irony closes off or shifts the growth of mathematical knowledge. The first part of the book is autobiographical, following the author through her discovery of these analogies, revealed by music, architecture, science fiction, philosophy, and the study of mathematics and poetry. The second part focuses on geometry, the circle and square, launching us from Shakespeare to Housman, from Euclid to Leibniz. The third part explores the study of dynamics, inertial motion and transcendental functions, from Descartes to Newton, and in 20th c. poetry. The final part contemplates infinity, as it emerges in modern set theory and topology, and in contemporary poems, including narrative poems about modern cosmology.


Deep Thinking: What Mathematics Can Teach Us About The Mind

Deep Thinking: What Mathematics Can Teach Us About The Mind

Author: William Byers

Publisher: World Scientific

Published: 2014-09-22

Total Pages: 263

ISBN-13: 9814618055

DOWNLOAD EBOOK

There is more than one way to think. Most people are familiar with the systematic, rule-based thinking that one finds in a mathematical proof or a computer program. But such thinking does not produce breakthroughs in mathematics and science nor is it the kind of thinking that results in significant learning. Deep thinking is a different and more basic way of using the mind. It results in the discontinuous “aha!” experience, which is the essence of creativity. It is at the heart of every paradigm shift or reframing of a problematic situation.The identification of deep thinking as the default state of the mind has the potential to reframe our current approach to technological change, education, and the nature of mathematics and science. For example, there is an unbridgeable gap between deep thinking and computer simulations of thinking. Many people suspect that such a gap exists, but find it difficult to make this intuition precise. This book identifies the way in which the authentic intelligence of deep thinking differs from the artificial intelligence of “big data” and “analytics”.Deep thinking is the essential ingredient in every significant learning experience, which leads to a new way to think about education. It is also essential to the construction of conceptual systems that are at the heart of mathematics and science, and of the technologies that shape the modern world. Deep thinking can be found whenever one conceptual system morphs into another.The sources of this study include the cognitive development of numbers in children, neuropsychology, the study of creativity, and the historical development of mathematics and science. The approach is unusual and original. It comes out of the author's lengthy experience as a mathematician, teacher, and writer of books about mathematics and science, such as How Mathematicians Think: Using Ambiguity, Contradiction, and Paradox to Create Mathematics and The Blind Spot: Science and the Crisis of Uncertainty.


Visual Reasoning with Diagrams

Visual Reasoning with Diagrams

Author: Amirouche Moktefi

Publisher: Springer Science & Business Media

Published: 2013-07-08

Total Pages: 210

ISBN-13: 3034806000

DOWNLOAD EBOOK

Logic, the discipline that explores valid reasoning, does not need to be limited to a specific form of representation but should include any form as long as it allows us to draw sound conclusions from given information. The use of diagrams has a long but unequal history in logic: The golden age of diagrammatic logic of the 19th century thanks to Euler and Venn diagrams was followed by the early 20th century's symbolization of modern logic by Frege and Russell. Recently, we have been witnessing a revival of interest in diagrams from various disciplines - mathematics, logic, philosophy, cognitive science, and computer science. This book aims to provide a space for this newly debated topic - the logical status of diagrams - in order to advance the goal of universal logic by exploring common and/or unique features of visual reasoning.