The Effect of Nuclear Radiation on Ceramic Reactor-fuel Materials

The Effect of Nuclear Radiation on Ceramic Reactor-fuel Materials

Author: James B. Melehan

Publisher:

Published: 1963

Total Pages: 84

ISBN-13:

DOWNLOAD EBOOK

This report presents state-of-the art information on the effects of nuclear radiation on ceramic reactor fuel materials that are being used or being considered for use in various types of reactors. The materials discussed include uranium oxides, uranium carbides, uranium mononitride, uranium silicides, plutonium oxide, and plutonium carbide. The report presents data in the form of tables and curves for physical damage incurred by the fuel materials as a result of their exposure to nuclear radiation.


The Effect of Nuclear Radiation on Structural Metals

The Effect of Nuclear Radiation on Structural Metals

Author: Frederic R. Shober

Publisher:

Published: 1961

Total Pages: 120

ISBN-13:

DOWNLOAD EBOOK

The effect of fast-neutron (>1 Mev) irradiation on the mechanical properties of structural metals and alloys was studied. Although the yield strengths and ultimate tensile strengths are increased su stantially for most materials, the ductility suffers severe decreases. This report presents these changes in properties of several structural metals for a number of neutron exposures within the 1.0 x 10 to the 18th power to 5.0 x 10 to the 21st power n/sq cm range. Data summarizing these effects on several classes of materials such as carbon steels, low-alloy steels, stainless steels, Zr-base alloys, ni-base alloys, Al-base alloys, and Ta are given. Additional data which show the influence f irradiation temperatures and of post-irradiation annealing on the radiation-induced property changes are also given and discussed. Increases as great as 175% in yield strength, 100% in ultimate strength, and decreases of 80% in total elongation are reported for fast-neutron exposures as great as 5 10 to the 21st power n/sq cm. (Author).


The Effect of Nuclear Radiation on Dispersion Fuel Materials

The Effect of Nuclear Radiation on Dispersion Fuel Materials

Author: M. Kangilaski

Publisher:

Published: 1966

Total Pages: 80

ISBN-13:

DOWNLOAD EBOOK

A complete summary of the irradiation performance of the various fuel materials dispersed in different matrices has been collected. The irradiation performance of the following dispersions is discussed in the report: BeO-UO2, BeO-UO2-ThO2, Al2O3-UO2, MgO-UO2, UO2, UC, UC2, and *U, Th)C2 U3O8 glass, and UAl3 dispersed in aluminum; UO2, UC, and UN dispersed in stainless steel; UO2 and UO2-Y2O3 dispersed in nickel-chromium alloys; UO2 dispersed in niobium, UO2 dispersed in molybdenum, UO2, UN, and UC dispersed in tungsten. The data which is summarized includes percentage of fuel by weight and volume, specimen shape and size, fuel particle size, cladding material and clad thickness, irradiation temperature, heat generation rates, irradiation times, fuel burnup, fission gas release, dimensional and density changes resulting from irradiation. (Author).


Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science

Author: GARY S. WAS

Publisher: Springer

Published: 2016-07-08

Total Pages: 1014

ISBN-13: 1493934384

DOWNLOAD EBOOK

The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.