This report establishes a user's manual for the acceptance, repair, or rejection of precast/prestressed concrete girders with longitudinal web cracking. The report also proposes revisions to the AASHTO LRFD Bridge Design Specifications and provides recommendations to develop improved crack control reinforcement details for use in new girders. The material in this report will be of immediate interest to bridge engineers.
TRB's National Cooperative Highway Research Program (NCHRP) Report 678: Design of FRP Systems for Strengthening Concrete Girders in Shear offers suggested design guidelines for concrete girders strengthened in shear using externally bonded Fiber-Reinforced Polymer (FRP) systems. The guidelines address the strengthening schemes and application of the FRP systems and their contribution to shear capacity of reinforced and prestressed concrete girders. The guidelines are supplemented by design examples to illustrate their use for concrete beams strengthened with different FRP systems. Appendix A of NCHRP Report 678, which contains the research agency's final report, provides further elaboration on the work performed in this project. Appendix A: Research Description and Findings, is only available online.
Effective maintenance of bridge structures comprises a broad spectrum of plans for repairs and services implemented to enable bridges to perform their intended function. These include in-depth inspection, fatigue analysis, design of mitigation measures and construction to avert component deterioration. Several incidents of in-service and under construction bridge failures have recently taken place. These dramatic failures emphasize the importance of risk-based inspections and analysis of real-life data to evaluate reliability of bridges. To effectuate benefits of reliability analysis in bridge maintenance, work on theoretical reliability must be equipped with practical analytical tools. Such an approach must underscore risk elements and identify processes to manage risk and avoid unexpected outcomes of failures and service disruption of bridges. The devastating earthquakes of February 6, 2023, in the southern region of Turkey near the northern border of Syria, which claimed tens of thousands of lives, caused enormous structural damage and staggering economic losses. These seismic events brought to focus on the vitality of instilling infrastructure routes that must accommodate emergency management plans to integrate the influx of medical and rescue response teams. The safe operation of bridges along these routes is indispensable for mobilization and deployment of rescue teams, medical personnel, humanitarian assistance, and the supply of food and water. The reliability of access routes and bridges is defined by their ability to adequately function as planned to effectuate emergency management plans, in the event of a similar seismic event, anywhere in the world. Risk-Based Strategies for Bridge Maintenance contains selected papers presented at the 11th New York City Bridge Conference (New York City, USA, 21-22 August 2023), and discusses issues of reliability, risk assessment, management, maintenance, inspection, monitoring, design, preservation, and rehabilitation of bridges. The book is aimed at bridge engineers.
An international team of experts has joined forces to produce the Bridge Engineering Handbook. They address all facets-the planning, design, inspection, construction, and maintenance of a variety of bridge structures-creating a must-have resource for every bridge engineer. This unique, comprehensive reference provides the means to review standard practices and keep abreast of new developments and state-of-the-art practices. Comprising 67 chapters in seven sections, the authors present: Fundamentals: Provides the basic concepts and theory of bridge engineering Superstructure Design: Discusses all types of bridges Substructure Design: Addresses columns, piers, abutments, and foundations Seismic Design: Presents the latest in seismic bridge design Construction and Maintenance: Focuses on the practical issues of bridge structures Special Topics: Offers new and important information and unique solutions Worldwide Practice: Summarizes bridge engineering practices around the world. Discover virtually all you need to know about any type of bridge: Reinforced, Segmental, and Prestressed Concrete Steel beam and plate girder Steel box girder Orthotropic deck Horizontally curved Truss Arch Suspension Cable-stayed Timber Movable Floating Railroad Special attention is given to rehabilitation, retrofit, and maintenance, and the Bridge Engineering Handbook offers over 1,600 tables, charts, and illustrations in ready-to-use format. An abundance of worked-out examples give readers step-by-step design procedures and the section on Worldwide Practice provides a broad and valuable perspective on the "big picture" of bridge engineering.
Understanding and recognising failure mechanisms in concrete is a fundamental pre-requisite to determining the type of repair, or whether a repair is feasible. This title provides a review of concrete deterioration and damage, as well as looking at the problem of defects in concrete. It also discusses condition assessment and repair techniques.Part one discusses failure mechanisms in concrete and covers topics such as causes and mechanisms of deterioration in reinforced concrete, types of damage in concrete structures, types and causes of cracking and condition assessment of concrete structures. Part two reviews the repair of concrete structures with coverage of themes such as standards and guidelines for repairing concrete structures, methods of crack repair, repair materials, bonded concrete overlays, repairing and retrofitting concrete structures with fiber-reinforced polymers, patching deteriorated concrete structures and durability of repaired concrete.With its distinguished editor and international team of contributors, Failure and repair of concrete structures is a standard reference for civil engineers, architects and anyone working in the construction sector, as well as those concerned with ensuring the safety of concrete structures. - Provides a review of concrete deterioration and damage - Discusses condition assessment and repair techniques, standards and guidelines
This volume contains the papers presented at the Third International Conference on Bridge Management, held at the University of Surrey, Guildford, UK on 14-17 April 1996.
From parking garages to roads and bridges, to structural concrete, this comprehensive book describes the causes, effects and remedies for concrete wear and failure. Hundreds of clear illustrations show users how to analyze, repair, clean and maintain concrete structures for optimal performance and cost effectiveness. This book is an invaluable reference for planning jobs, selecting materials, and training employees. With information organized in all-inclusive units for easy reference, this book is ideal for concrete specialists, general contractors, facility managers, civil and structural engineers, and architects.
Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations contains lectures and papers presented at the Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020), held in Sapporo, Hokkaido, Japan, April 11–15, 2021. This volume consists of a book of extended abstracts and a USB card containing the full papers of 571 contributions presented at IABMAS 2020, including the T.Y. Lin Lecture, 9 Keynote Lectures, and 561 technical papers from 40 countries. The contributions presented at IABMAS 2020 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of maintenance, safety, management, life-cycle sustainability and technological innovations of bridges. Major topics include: advanced bridge design, construction and maintenance approaches, safety, reliability and risk evaluation, life-cycle management, life-cycle sustainability, standardization, analytical models, bridge management systems, service life prediction, maintenance and management strategies, structural health monitoring, non-destructive testing and field testing, safety, resilience, robustness and redundancy, durability enhancement, repair and rehabilitation, fatigue and corrosion, extreme loads, and application of information and computer technology and artificial intelligence for bridges, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of making more rational decisions on maintenance, safety, management, life-cycle sustainability and technological innovations of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including engineers, researchers, academics and students from all areas of bridge engineering.