Based on the authors’ research, Reliability and Optimal Maintenance presents the latest theories and methods of reliability and maintenance with an emphasis on multi-component systems, while also considering current hot topics in reliability and maintenance including: imperfect repair, economic dependence and opportunistic maintenance, and correlated failure and repair. Software reliability and maintenance cost, and warranty cost considerations are also considered.
This utterly comprehensive work is thought to be the first to integrate the literature on the physics of the failure of complex systems such as hospitals, banks and transport networks. It has chapters on particular aspects of maintenance written by internationally-renowned researchers and practitioners. This book will interest maintenance engineers and managers in industry as well as researchers and graduate students in maintenance, industrial engineering and applied mathematics.
Many serious accidents have happened in the world where systems have been large-scale and complex, and have caused heavy damage and a social sense of instability. Furthermore, advanced nations have almost ?nished public inf- structureandrushedintoamaintenanceperiod.Maintenancewillbemore- portant than production, manufacture, and construction, that is, more ma- tenance for environmental considerations and for the protection of natural resources. From now on, the importance of maintenance will increase more and more. In the past four decades, valuable contributions to maintenance policies in reliability theory have been made. This book is intended to s- marize the research results studied mainly by the author in the past three decades. The book deals primarily with standard to advanced problems of main- nance policies for system reliability models. System reliability can be mainly improved by repair and preventive maintenance, and replacement, and rel- bility properties can be investigated by using stochastic process techniques. The optimum maintenance policies for systems that minimize or maximize appropriate objective functions under suitable conditions are discussed both analytically and practically. The book is composed of nine chapters. Chapter 1 is devoted to an int- duction to reliability theory, and brie?y reviews stochastic processes needed for reliability and maintenance theory. Chapter 2 summarizes the results of repair maintenance, which is the most basic maintenance in reliability. The repair maintenance of systems such as the one-unit system and multiple-unit redundant systems is treated. Chapters 3 through 5 summarize the results of three typical maintenance policies of age, periodic, and block replacements.
Reliability and Maintenance: Networks and Systems gives an up-to-date presentation of system and network reliability analysis as well as maintenance planning with a focus on applicable models. Balancing theory and practice, it presents state-of-the-art research in key areas of reliability and maintenance theory and includes numerous examples and ex
Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which classical renewal theory is surveyed and computa tional methods are described. Chapter 2 discusses "Stochastic Orders," and in it some definitions and concepts on stochastic orders are described and ag ing properties can be characterized by stochastic orders. Chapter 3 is devoted to "Classical Maintenance Models," under which the so-called age, block and other replacement models are surveyed. Chapter 4 discusses "Modeling Plant Maintenance," describing how maintenance practice can be carried out for plant maintenance.
As our modern information-age society grows in complexity both in terms of embedded systems and applications, the problems and challenges in reliability become ever more complex. Bringing together many of the leading experts in the field, this volume presents a broad picture of current research on system modeling and optimization in reliability and its applications.The book comprises twenty-three chapters organized into four parts: Reliability Modeling, Software Quality Engineering, Software Reliability, and Maintenance and Inspection Policies. These sections cover a wide range of important topics, including system reliability modeling, optimization, software reliability and quality, maintenance theory and inspection, reliability failure analysis, sampling plans and schemes, software development processes and improvement, stochastic process modeling, statistical distributions and analysis, fault-tolerant performance, software measurements and cost effectiveness, queueing theory and applications, system availability, reliability of repairable systems, testing sampling inspection, software capability maturity model, accelerated life modeling, statistical control, and HALT testing.
Engineering Asset Management discusses state-of-the-art trends and developments in the emerging field of engineering asset management as presented at the Fourth World Congress on Engineering Asset Management (WCEAM). It is an excellent reference for practitioners, researchers and students in the multidisciplinary field of asset management, covering such topics as asset condition monitoring and intelligent maintenance; asset data warehousing, data mining and fusion; asset performance and level-of-service models; design and life-cycle integrity of physical assets; deterioration and preservation models for assets; education and training in asset management; engineering standards in asset management; fault diagnosis and prognostics; financial analysis methods for physical assets; human dimensions in integrated asset management; information quality management; information systems and knowledge management; intelligent sensors and devices; maintenance strategies in asset management; optimisation decisions in asset management; risk management in asset management; strategic asset management; and sustainability in asset management.
This introductory textbook links theory with practice using real illustrative cases involving products, plants and infrastructures and exposes the student to the evolutionary trends in maintenance. Provides an interdisciplinary approach which links, engineering, science, technology, mathematical modelling, data collection and analysis, economics and management Blends theory with practice illustrated through examples relating to products, plants and infrastructures Focuses on concepts, tools and techniques Identifies the special management requirements of various engineered objects (products, plants, and infrastructures)
Since the publication of the second edition in 2013, there has been an increasing interest in asset management globally, as evidenced by a series of international standards on asset management systems, to achieve excellence in asset management. This cannot be achieved without high-quality data and the tools for data interpretation. The importance of such requirements is widely recognized by industry. The third edition of this textbook focuses on tools for physical asset management decisions that are data driven. It also uses a theoretical foundation to the tools (mathematical models) that can be used to optimize a variety of key maintenance/replacement/reliability decisions. Problem sets with answers are provided at the end of each chapter. Also available is an extensive set of PowerPoint slides and a solutions manual upon request with qualified textbook adoptions. This new edition can be used in undergraduate or post-graduate courses on physical asset management.
The Handbook of Reliability, Maintenance, and System Safety through Mathematical Modeling discusses the many factors affect reliability and performance, including engineering design, materials, manufacturing, operations, maintenance, and many more. Reliability is one of the fundamental criteria in engineering systems design, with maintenance serving as a way to support reliability throughout a system's life. Addressing these issues requires information, modeling, analysis and testing. Different techniques are proposed and implemented to help readers analyze various behavior measures (in terms of the functioning and performance) of systems. Enables mathematicians to convert any process or system into a model that can be analyzed through a specific technique Examines reliability and mathematical modeling in a variety of disciplines, unlike competitors which typically examine only one Includes a table of contents with simple to complex examples, starting with basic models and then refining modeling approaches step-by-step