This comprehensive book contains the latest information on diverse biological functions of relaxin and related peptide found since the recent discovery of relaxin receptors. It also describes the evolution of relaxin family peptides and their receptors, molecular mechanisms of ligand/receptor interaction and the analysis of activated signaling pathways.
Biological processes are driven by complex systems of functionally interacting signaling molecules. Thus, understanding signaling molecules is essential to explain normal or pathological biological phenomena. A large body of clinical and experimental data has been accumulated over these years, albeit in fragmented state. Hence, systems biological approaches concomitant with the understanding of each molecule are ideal to delineate signaling networks/pathways involved in the biologically important processes. The control of these signaling pathways will enrich our healthier life. Currently, there are more than 30,000 genes in human genome. However, not all the proteins encoded by these genes work equally in order to maintain homeostasis. Understanding the important signaling molecules as completely as possible will significantly improve our research-based teaching and scientific capabilities. This encyclopedia presents 350 biologically important signaling molecules and the content is built on the core concepts of their functions along with early findings written by some of the world’s foremost experts. The molecules are described by recognized leaders in each molecule. The interactions of these single molecules in signal transduction networks will also be explored. This encyclopedia marks a new era in overview of current cellular signaling molecules for the specialist and the interested non-specialist alike During past years, there were multiple databases to gather this information briefly and very partially. Amidst the excitement of these findings, one of the great scientific tasks of the coming century is to bring all the useful information into a place. Such an approach is arduous but at the end will infuse the lacunas and considerably be a streamline in the understanding of vibrant signaling networks. Based on this easy-approach, we can build up more complicated biological systems.
Relaxin is a protein hormone, produced and secreted during pregnancy in mammalian species, having superficial structural features resembling those of insulin. Since its initial isolation from the ovaries of pregnant pigs in 1976, increasing interest in relaxin has led to increased understanding of the chemistry, synthesis, secretion, biological roles, mechanisms of action, and potential clinical applications of relaxin in humans and domestic animals. In pigs, rats, and mice, relaxin promotes growth and softening of the cervix, enabling rapid and safe delivery of the fetuses. In these species relaxin also promotes growth and development of the mammary apparatus. Recently, biological effects of relaxin in the heart, kidney, liver, and brain have been identified, and these discoveries have triggered additional interest in possible clinical applications for relaxin. In 2002, a second form of relaxin, which is found primarily in the brain, was discovered. Relaxin-like factor (also called insulin 3), which was discovered in 1993, is produced in the fetal testis and plays a major role in testicular descent during development. The recent identification of the receptors for both relaxin and relaxin-like factor has enabled more rigorous studies of the target tissues and mechanisms of action of these hormones. This volume contains a description of recent advances and future research and clinical possibilities in the field of relaxin and related peptides. NOTE: Annals volumes are available for sale as individual books or as a journal. For information on institutional journal subscriptions, please visit www.blackwellpublishing.com/nyas. ACADEMY MEMBERS: Please contact the New York Academy of Sciences directly to place your order (www.nyas.org). Members of the New York Academy of Science receive full-text access to the Annals online and discounts on print volumes. Please visit http://www.nyas.org/MemberCenter/Join.aspx for more information about becoming a member.
As drug development shifts over time to address unmet medical needs and more targeted therapies are developed, previously unseen pharmacological or off-target effects may occur in treatment. Designed to provide practical information for the bench toxicologic pathologist working in pharmaceutical drug research, Toxicologic Pathology: Nonclinical Saf
Bovine Reproduction is a comprehensive, current reference providing information on all aspects of reproduction in the bull and cow. Offering fundamental knowledge on evaluating and restoring fertility in the bovine patient, the book also places information in the context of herd health where appropriate for a truly global view of bovine theriogenology. Printed in full color throughout, the book includes 83 chapters and more than 550 images, making it the most exhaustive reference available on this topic. Each section covers anatomy and physiology, breeding management, and reproductive surgery, as well as obstetrics and pregnancy wastage in the cow. Bovine Reproduction is a welcome resource for bovine practitioners, theriogenologists, and animal scientists, as well as veterinary students and residents with an interest in the cow.
The identification of the receptors for both relaxin and relaxin-like factor has enabled more rigorous studies of the target tissues and mechanisms of action of these hormones. This volume contains a description of advances and future research and clinical possibilities in the field of relaxin and related peptides.
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.
This book provides a comprehensive study of the Leydig cell, a fascinating and important cell type. It presents all of the developments in our understanding of Leydig cell biology and explores a wide variety of current and potential clinical applications. All aspects of Leydig cell biology, development, regulation, and physiology are explored in thirty-one expertly written chapters. This in-depth volume is an invaluable resource.
In 1993, an International Task Force for Disease Eradication evaluated over 80 potential candidate diseases and made recommendations. However, little has been done to develop the science of eradication systematically. This book reports the findings of a multidisciplinary workshop on the eradication of infectious diseases. It reviews the history of eradication efforts and lessons from previous campaigns and distinguishes among eradication, elimination, and control programs and extinction of an etiologic agent. It addresses a wide range of related issues, including biological and socio-political criteria for eradication, costs and benefits of eradication campaigns, opportunities for strengthening primary health care in the course of eradication efforts, and other aspects of planning and implementing eradication programs. Finally, it stresses the importance of global mechanisms for formulating and implementing such programs.
This detailed book provides methodological information on cardiac gene delivery, from classic to state-of-the-art technologies and techniques. Efficient, cardiac-specific, and safe vectors, as well as refined vector delivery methods, are key for successful cardiac gene transfer and eventually for improving patients’ outcomes. Newer vectors and more efficient vector delivery methods have the potential to dramatically improve gene transduction efficacy, while novel gene manipulation techniques enforce the therapeutic power and broaden disease targets. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cardiac Gene Therapy: Methods and Protocols serves as a valuable tool for molecular biologists and physiologists in the cardiology field conducting cardiac gene transfer research, which will ultimately lead to further advancements in the vital field.