Free Algebras and PI-algebras

Free Algebras and PI-algebras

Author: Vesselin S. Drensky

Publisher:

Published: 2000

Total Pages: 292

ISBN-13:

DOWNLOAD EBOOK

The book is devoted to the combinatorial theory of polynomial algebras, free associative and free Lie algebras, and algebras with polynomial identities. It also examines the structure of automorphism groups of free and relatively free algebras. It is based on graduate courses and short cycles of lectures presented by the author at several universities and its goal is to involve the reader as soon as possible in the research area, to make him or her able to read books and papers on the considered topics. It contains both classical and contemporary results and methods. A specific feature of the book is that it includes as its inseparable part more than 250 exercises and examples with detailed hints (50 % of the numbered statements), some of them treating serious mathematical results. The exposition is accessible for graduate and advanced undergraduate students with standard background on linear algebra and some elements of ring theory and group theory. The professional mathematician working in the field of algebra and other related topics also will find the book useful for his or her research and teaching. TOC:Introduction 1. Commutative, Associative and Lie Algebras: Basic properties of algebras; Free algebras; The Poincaré-Birkhoff-Witt theorem. 2. Algebras with Polynomial Identities: Definitions and examples of PI-Algebras; Varieties and relatively free algebras; The theorem of Birkhoff. 3. The Specht Problem: The finite basis property; Lie algebras in characteristic 2. 4. Numerical Invariants of T-Ideals: Graded vector spaces; Homogeneous and multilinear polynomial identities; Proper polynomial identities. 5. Polynomial Identities of Concrete Algebras: Polynomial identities of the Grassmann algebra; Polynomial identities of the upper triangular matrices. 6. Methods of Commutative Algebra: Rational Hilbert series; Nonmatrix polynomial identities; Commutative and noncommutative invariant theory. 7. Polynomial Identities of the Matrix Algebras: The Amitsur-Levitzki theorem; Generic matrices; Central polynomials; Various identities of matrices. 8. Multilinear Polynomial Identities: The codimension theorem of Regev; Algebras with polynomial growth of codimensions; The Nagata-Higman theorem; The theory of Kemer. 9. Finitely Generated PI-Algebras: The problems of Burnside and Kurosch; The Shirshov theorem; Growth of algebras and Gelfand-Kirillov dimension; Gelfand-Kirillov dimension of PI-Algebras. 10. Automorphisms of Free Algebras: Automorphisms of groups and algebras; The polynomial algebra in two variables; The free associative algebra of rank two; Exponential automorphisms; Automorphisms of relatively free algebras. 11. Free Lie Algebras and Their Automorphisms: Bases and subalgebras of free Lie algebras; Automorphisms of free Lie algebras; Automorphisms of relatively free Lie algebras. 12. The Method of Representation Theory: Representations of finite groups; The symmetric group; Multilinear polynomial identities; The action of the general linear group; Proper polynomial identities; Polynomial identities of matrices.


Polynomial Identities in Algebras

Polynomial Identities in Algebras

Author: Onofrio Mario Di Vincenzo

Publisher: Springer Nature

Published: 2021-03-22

Total Pages: 421

ISBN-13: 3030631117

DOWNLOAD EBOOK

This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.


Invariant Theory of Finite Groups

Invariant Theory of Finite Groups

Author: Mara D. Neusel

Publisher: American Mathematical Soc.

Published: 2010-03-08

Total Pages: 384

ISBN-13: 0821849816

DOWNLOAD EBOOK

The questions that have been at the center of invariant theory since the 19th century have revolved around the following themes: finiteness, computation, and special classes of invariants. This book begins with a survey of many concrete examples chosen from these themes in the algebraic, homological, and combinatorial context. In further chapters, the authors pick one or the other of these questions as a departure point and present the known answers, open problems, and methods and tools needed to obtain these answers. Chapter 2 deals with algebraic finiteness. Chapter 3 deals with combinatorial finiteness. Chapter 4 presents Noetherian finiteness. Chapter 5 addresses homological finiteness. Chapter 6 presents special classes of invariants, which deal with modular invariant theory and its particular problems and features. Chapter 7 collects results for special classes of invariants and coinvariants such as (pseudo) reflection groups and representations of low degree. If the ground field is finite, additional problems appear and are compensated for in part by the emergence of new tools. One of these is the Steenrod algebra, which the authors introduce in Chapter 8 to solve the inverse invariant theory problem, around which the authors have organized the last three chapters. The book contains numerous examples to illustrate the theory, often of more than passing interest, and an appendix on commutative graded algebra, which provides some of the required basic background. There is an extensive reference list to provide the reader with orientation to the vast literature.


Introduction to Complex Reflection Groups and Their Braid Groups

Introduction to Complex Reflection Groups and Their Braid Groups

Author: Michel Broué

Publisher: Springer

Published: 2010-01-28

Total Pages: 150

ISBN-13: 3642111750

DOWNLOAD EBOOK

This book covers basic properties of complex reflection groups, such as characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, including the basic findings of Springer theory on eigenspaces.


Reflection Groups and Coxeter Groups

Reflection Groups and Coxeter Groups

Author: James E. Humphreys

Publisher: Cambridge University Press

Published: 1992-10

Total Pages: 222

ISBN-13: 9780521436137

DOWNLOAD EBOOK

This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for courses and seminars or for self-study. The first part is devoted to establishing concrete examples. Finite reflection groups acting on Euclidean spaces are discussed, and the first part ends with the construction of the affine Weyl groups, a class of Coxeter groups that plays a major role in Lie theory. The second part (which is logically independent of, but motivated by, the first) develops from scratch the properties of Coxeter groups in general, including the Bruhat ordering and the seminal work of Kazhdan and Lusztig on representations of Hecke algebras associated with Coxeter groups is introduced. Finally a number of interesting complementary topics as well as connections with Lie theory are sketched. The book concludes with an extensive bibliography on Coxeter groups and their applications.


Non-Associative Algebras and Related Topics

Non-Associative Algebras and Related Topics

Author: Helena Albuquerque

Publisher: Springer Nature

Published: 2023-07-28

Total Pages: 305

ISBN-13: 3031327071

DOWNLOAD EBOOK

This proceedings volume presents a selection of peer-reviewed contributions from the Second Non-Associative Algebras and Related Topics (NAART II) conference, which was held at the University of Coimbra, Portugal, from July 18–22, 2022. The conference was held in honor of mathematician Alberto Elduque, who has made significant contributions to the study of non-associative structures such as Lie, Jordan, and Leibniz algebras. The papers in this volume are organized into four parts: Lie algebras, superalgebras, and groups; Leibniz algebras; associative and Jordan algebras; and other non-associative structures. They cover a variety of topics, including classification problems, special maps (automorphisms, derivations, etc.), constructions that relate different structures, and representation theory. One of the unique features of NAART is that it is open to all topics related to non-associative algebras, including octonion algebras, composite algebras, Banach algebras, connections with geometry, applications in coding theory, combinatorial problems, and more. This diversity allows researchers from a range of fields to find the conference subjects interesting and discover connections with their own areas, even if they are not traditionally considered non-associative algebraists. Since its inception in 2011, NAART has been committed to fostering cross-disciplinary connections in the study of non-associative structures.


Finite Reflection Groups

Finite Reflection Groups

Author: L.C. Grove

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 142

ISBN-13: 1475718691

DOWNLOAD EBOOK

Chapter 1 introduces some of the terminology and notation used later and indicates prerequisites. Chapter 2 gives a reasonably thorough account of all finite subgroups of the orthogonal groups in two and three dimensions. The presentation is somewhat less formal than in succeeding chapters. For instance, the existence of the icosahedron is accepted as an empirical fact, and no formal proof of existence is included. Throughout most of Chapter 2 we do not distinguish between groups that are "geo metrically indistinguishable," that is, conjugate in the orthogonal group. Very little of the material in Chapter 2 is actually required for the sub sequent chapters, but it serves two important purposes: It aids in the development of geometrical insight, and it serves as a source of illustrative examples. There is a discussion offundamental regions in Chapter 3. Chapter 4 provides a correspondence between fundamental reflections and funda mental regions via a discussion of root systems. The actual classification and construction of finite reflection groups takes place in Chapter 5. where we have in part followed the methods of E. Witt and B. L. van der Waerden. Generators and relations for finite reflection groups are discussed in Chapter 6. There are historical remarks and suggestions for further reading in a Post lude.