Long Term Corrosion of Reinforcing Strips in Mechanically Stabilized Earth Walls

Long Term Corrosion of Reinforcing Strips in Mechanically Stabilized Earth Walls

Author: Brandon Seth Berke

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

ABSTRACT: Mechanically stabilized earth (MSE) walls are a more advanced form of a retaining wall, often larger and able to hold back more backfill. This is achieved by reinforcing strips or meshes (most often galvanized steel) placed into the soil, which are held in place by friction. The strips mechanically stabilize the earth while undergoing tension. The wall is covered with concrete medallions that connect to the reinforcements. The medallions have only a secondary structural role in holding up the wall but provide cover that protects the soil from washing away. MSE walls are structures expected to have very long service lives (e.g. 100 years). Confirmation is needed that such durability can be achieved, especially to show that the progression of corrosion of the reinforcement is slow enough. Ten MSE walls around Florida were instrumented (electrical connections were made through the concrete covers to the buried elements) between 1996- 1998 and used to survey corrosion rates of galvanized strip or mesh soil reinforcements. Initial estimates of corrosion-related durability were obtained at that time, indicating a good prognosis for long term durability. The objective of the research in this thesis was to obtain additional indications of the durability of reinforcements in MSE walls in Florida so as to perform a more reliable projection of future performance. Corrosion behavior was measured at the same locations as the initial survey by electrochemical nondestructive tests and by destructive tests. The nondestructive testing consisted of half-cell potentials, polarization resistance measurements, and electrochemical impedance spectroscopy. Corrosion rates reported in this thesis are based upon polarization resistance measurements. The destructive testing consisted of soil extraction and hardware extraction. Hardware extraction enabled independent verification of estimates of electrochemical corrosion rate. Analysis of extracted soil verified that soil composition was within construction specifications. The data from the current survey were also used to further improve prediction of corrosion. The present series of evaluations confirm that the structures are performing as desired based upon the updated model projection of future corrosion.


Evaluation of Corrosion of Metallic Reinforcements and Connections in MSE Retaining Walls

Evaluation of Corrosion of Metallic Reinforcements and Connections in MSE Retaining Walls

Author: Christopher L. Raeburn

Publisher:

Published: 2008

Total Pages: 42

ISBN-13:

DOWNLOAD EBOOK

Mechanically Stabilized Earth (MSE) retaining walls have become the dominant retained wall system on ODOT projects. The permanent MSE walls constructed on ODOT projects, in recent years, use metallic reinforcements and facing connections buried directly in the backfill soil. Accelerated deterioration of these structural elements would have serious financial and safety impacts for the Department. Classical MSE wall design incorporates an estimate of deterioration of reinforcement by corrosion. Monitoring of actual corrosion performance, however, is an important element of managing the current inventory of MSE walls. Monitoring could answer key questions that can provide for the best management of the existing walls, and provide feedback to the design process for future installations. This report details a literature review of methods for estimating and measuring deterioration of structural reinforcing elements in both concrete and MSE walls. It also presents a selected history of metallic reinforcement design specification and utilization. A listing of the MSE walls that can be identified in the ODOT Bridge Data System is included.


Alternative Steel Reinforcement in Mechanically Stabilized Earth (MSE) Walls

Alternative Steel Reinforcement in Mechanically Stabilized Earth (MSE) Walls

Author: Daniel T. Pond

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Mechanically Stabilize Earth (MSE) is a method in which soil tensile strength and shear resistance is increased by using reinforcement. The traditional forms of reinforcement include bars, galvanized strips, welded wire mats or steel grids, and geosynthetics.When steel is used as reinforcement in MSE walls, it gets corroded or decayed. Certain shapes of reinforcement will have less corrosion because less surface area is exposed. Pullout resistance is the ability to resist a tensile force. This can be affected by the design and shape of the steel. This study simulates different overburden depths or pressures for pullout resistance and evaluates standard corrosion rates.


Earth Reinforcement and Soil Structures

Earth Reinforcement and Soil Structures

Author: Colin J F P Jones

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 211

ISBN-13: 148310446X

DOWNLOAD EBOOK

Earth Reinforcement and Soil Structures provides a coverage of the basic aspects of reinforced soil. The book is comprised of 12 chapters that cover the theoretical elements up to the practical applications. The first two chapters provide the introduction and historical review of the subject of reinforced soil. The third chapter presents a catalogue of some of the application areas for the use of earth reinforcement, while the fourth chapter covers the theoretical concepts. The next six chapters deal with the practical aspects of earth reinforcements, such as design, construction, costs, and durability. The remaining two chapters provide some worked examples and discuss the developments in earth reinforcement, respectively. The text will be of great use to undergraduate students of civil engineering and other related fields.


Assessing the Long-term Performance of Mechanically Stabilized Earth Walls

Assessing the Long-term Performance of Mechanically Stabilized Earth Walls

Author: Travis M. Gerber

Publisher: Transportation Research Board

Published: 2012

Total Pages: 211

ISBN-13: 0309223741

DOWNLOAD EBOOK

"Mechanically stabilized earth (MSE) walls are an important class of infrastructure assets whose long-term performance depends on various factors. As with most all other classes of assets, MSE walls need periodic inspection and assessment of performance. To date, some agencies have established MSE wall monitoring programs, whereas others are looking for guidance, tools, and funding to establish their own monitoring programs. The objective of this synthesis project is to determine how transportation agencies monitor, assess, and predict the long-term performance of MSE walls. The information used to develop this synthesis came from a literature review together with a survey and interviews. Of the 52 U.S. and 12 Canadian targeted survey recipients, 39 and five, respectively, responded. This synthesis reveals that unlike bridges and pavements, MSE walls and retaining walls in general are often overlooked as assets. Fewer than one-quarter of state-level transportation agencies in the United States have developed some type of MSE wall inventory beyond that which may be captured as part of their bridge inventories. Fewer still have the methods and means to populate their inventories with data from ongoing inspections from which assessments of wall performance can be made. In the United States, there is no widely used, consistently applied system for managing MSE walls. Wall inventory and monitoring practices vary between agencies. This synthesis examines existing practices concerning the nature, scope, and extent of existing MSE wall inventories. It also examines the collection of MSE wall data, including the types of performance data collected, how they are maintained in wall inventories and databases, the frequency of inventory activities, and assessment practices relevant to reinforcement corrosion and degradation. Later parts of this synthesis discuss how MSE wall performance data are assessed, interpreted, and used in asset management decisions. This synthesis finds that the most well-implemented wall inventory and assessment system in the United States is the Wall Inventory Program developed by FHWA for the National Park Service. However, this system, like some others, uses 'condition narratives' in a process that can be somewhat cumbersome and subjective. Other systems use more direct numeric scales to describe wall conditions, and an advantage of such systems is that they are often compatible with those used in assessments of bridges. As experience with MSE walls accumulates, agencies will likely continue to develop, refine, and better calibrate procedures affecting design, construction, condition assessment, and asset management decisions. One portion of this synthesis is dedicated to summarizing the actions taken thus far by survey respondents to improve the long-term performance of their MSE walls. Many agencies prescribe the use of a pre-approved wall design and/or wall supplier. Other actions or policies frequently focus on drainage-related issues."--Summary.


Corrosion Effects of Cement Stabilized Backfill on Galvanized Steel Earth Reinforcements

Corrosion Effects of Cement Stabilized Backfill on Galvanized Steel Earth Reinforcements

Author: Derek V. Morris

Publisher:

Published: 1994

Total Pages: 156

ISBN-13:

DOWNLOAD EBOOK

Cement stabilization of backfill has been used for some time in mechanically stabilized earth type retaining walls. However, there has been no data on the corrosion life of galvanized steel reinforcement in this environment, which is intermediate in pH between normal soil and pure cement. Field observations had indicated a potential corrosion problem at a particular site in District 12. As a result of the test program conducted during this project, the following conclusions were made. First, cement addition to backfill in the usual quantities (i.e. 7% or more) raised the pH environment to values close to that of normal concrete. At these levels corrosion rates of zinc coatings were not significantly accelerated -- if anything, corrosion rates were less than for unstabilized fill. Second, very small amounts of cement addition, of the order of 1% to 4% producing pH values significantly less than 12, could cause limited acceleration of corrosion. It is, therefore, advisable to control minimum cement levels and to encourage efficient mixing. Third, elevated corrosion rates were associated primarily with the presence of inorganic ions, both for stabilized and unstabilized fill. In the case of the problem site in District 12, this appeared to be the result primarily of unusually high sulfate content in the fill. Fourth, the use of crushed concrete as backfill did not accelerate corrosion. This material, therefore, appears to be acceptable for this application.