Regulation of Tissue Oxygenation, Second Edition

Regulation of Tissue Oxygenation, Second Edition

Author: Roland N. Pittman

Publisher: Biota Publishing

Published: 2016-08-18

Total Pages: 117

ISBN-13: 1615047212

DOWNLOAD EBOOK

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.


Skeletal Muscle Circulation

Skeletal Muscle Circulation

Author: Ronald J. Korthuis

Publisher: Morgan & Claypool Publishers

Published: 2011

Total Pages: 147

ISBN-13: 1615041834

DOWNLOAD EBOOK

The aim of this treatise is to summarize the current understanding of the mechanisms for blood flow control to skeletal muscle under resting conditions, how perfusion is elevated (exercise hyperemia) to meet the increased demand for oxygen and other substrates during exercise, mechanisms underlying the beneficial effects of regular physical activity on cardiovascular health, the regulation of transcapillary fluid filtration and protein flux across the microvascular exchange vessels, and the role of changes in the skeletal muscle circulation in pathologic states. Skeletal muscle is unique among organs in that its blood flow can change over a remarkably large range. Compared to blood flow at rest, muscle blood flow can increase by more than 20-fold on average during intense exercise, while perfusion of certain individual white muscles or portions of those muscles can increase by as much as 80-fold. This is compared to maximal increases of 4- to 6-fold in the coronary circulation during exercise. These increases in muscle perfusion are required to meet the enormous demands for oxygen and nutrients by the active muscles. Because of its large mass and the fact that skeletal muscles receive 25% of the cardiac output at rest, sympathetically mediated vasoconstriction in vessels supplying this tissue allows central hemodynamic variables (e.g., blood pressure) to be spared during stresses such as hypovolemic shock. Sympathetic vasoconstriction in skeletal muscle in such pathologic conditions also effectively shunts blood flow away from muscles to tissues that are more sensitive to reductions in their blood supply that might otherwise occur. Again, because of its large mass and percentage of cardiac output directed to skeletal muscle, alterations in blood vessel structure and function with chronic disease (e.g., hypertension) contribute significantly to the pathology of such disorders. Alterations in skeletal muscle vascular resistance and/or in the exchange properties of this vascular bed also modify transcapillary fluid filtration and solute movement across the microvascular barrier to influence muscle function and contribute to disease pathology. Finally, it is clear that exercise training induces an adaptive transformation to a protected phenotype in the vasculature supplying skeletal muscle and other tissues to promote overall cardiovascular health. Table of Contents: Introduction / Anatomy of Skeletal Muscle and Its Vascular Supply / Regulation of Vascular Tone in Skeletal Muscle / Exercise Hyperemia and Regulation of Tissue Oxygenation During Muscular Activity / Microvascular Fluid and Solute Exchange in Skeletal Muscle / Skeletal Muscle Circulation in Aging and Disease States: Protective Effects of Exercise / References


Regulation of Endothelial Barrier Function

Regulation of Endothelial Barrier Function

Author: Sarah Y. Yuan

Publisher: Biota Publishing

Published: 2011-02-01

Total Pages: 160

ISBN-13: 1615041214

DOWNLOAD EBOOK

The vascular endothelium lining the inner surface of blood vessels serves as the first interface for circulating blood components to interact with cells of the vascular wall and surrounding extravascular tissues. In addition to regulating blood delivery and perfusion, a major function of vascular endothelia, especially those in exchange microvessels (capillaries and postcapillary venules), is to provide a semipermeable barrier that controls blood–tissue exchange of fluids, nutrients, and metabolic wastes while preventing pathogens or harmful materials in the circulation from entering into tissues. During host defense against infection or tissue injury, endothelial barrier dysfunction occurs as a consequence as well as cause of inflammatory responses. Plasma leakage disturbs fluid homeostasis and impairs tissue oxygenation, a pathophysiological process contributing to multiple organ dysfunction associated with trauma, infection, metabolic disorder, and other forms of disease. In this book, we provide an updated overview of microvascular endothelial barrier structure and function in health and disease. The discussion is initiated with the basic physiological principles of fluid and solute transport across microvascular endothelium, followed by detailed information on endothelial cell–cell and cell–matrix interactions and the experimental techniques that are employed to measure endothelial permeability. Further discussion focuses on the signaling and molecular mechanisms of endothelial barrier responses to various stimulations or drugs, as well as their relevance to several common clinical conditions. Taken together, this book provides a comprehensive analysis of microvascular endothelial cell and molecular pathophysiology. Such information will assist scientists and clinicians in advanced basic and clinical research for improved health care.


Regulation of Coronary Blood Flow

Regulation of Coronary Blood Flow

Author: Michitoshi Inoue

Publisher: Springer Science & Business Media

Published: 2013-11-09

Total Pages: 330

ISBN-13: 4431683674

DOWNLOAD EBOOK

Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.


Capillary Fluid Exchange

Capillary Fluid Exchange

Author: Joshua Scallan

Publisher: Morgan & Claypool Publishers

Published: 2010

Total Pages: 86

ISBN-13: 1615040668

DOWNLOAD EBOOK

The partition of fluid between the vascular and interstitial compartments is regulated by forces (hydrostatic and oncotic) operating across the microvascular walls and the surface areas of permeable structures comprising the endothelial barrier to fluid and solute exchange, as well as within the extracellular matrix and lymphatics. In addition to its role in the regulation of vascular volume, transcapillary fluid filtration also allows for continuous turnover of water bathing tissue cells, providing the medium for diffusional flux of oxygen and nutrients required for cellular metabolism and removal of metabolic byproducts. Transendothelial volume flow has also been shown to influence vascular smooth muscle tone in arterioles, hydraulic conductivity in capillaries, and neutrophil transmigration across postcapillary venules, while the flow of this filtrate through the interstitial spaces functions to modify the activities of parenchymal, resident tissue, and metastasizing tumor cells. Likewise, the flow of lymph, which is driven by capillary filtration, is important for the transport of immune and tumor cells, antigen delivery to lymph nodes, and for return of filtered fluid and extravasated proteins to the blood. Given this background, the aims of this treatise are to summarize our current understanding of the factors involved in the regulation of transcapillary fluid movement, how fluid movements across the endothelial barrier and through the interstitium and lymphatic vessels influence cell function and behavior, and the pathophysiology of edema formation. Table of Contents: Fluid Movement Across the Endothelial Barrier / The Interstitium / The Lymphatic Vasculature / Pathophysiology of Edema Formation


Bioprocess Engineering Principles

Bioprocess Engineering Principles

Author: Pauline M. Doran

Publisher: Elsevier

Published: 1995-04-03

Total Pages: 455

ISBN-13: 0080528120

DOWNLOAD EBOOK

The emergence and refinement of techniques in molecular biology has changed our perceptions of medicine, agriculture and environmental management. Scientific breakthroughs in gene expression, protein engineering and cell fusion are being translated by a strengthening biotechnology industry into revolutionary new products and services. Many a student has been enticed by the promise of biotechnology and the excitement of being near the cutting edge of scientific advancement. However, graduates trained in molecular biology and cell manipulation soon realise that these techniques are only part of the picture. Reaping the full benefits of biotechnology requires manufacturing capability involving the large-scale processing of biological material. Increasingly, biotechnologists are being employed by companies to work in co-operation with chemical engineers to achieve pragmatic commercial goals. For many years aspects of biochemistry and molecular genetics have been included in chemical engineering curricula, yet there has been little attempt until recently to teach aspects of engineering applicable to process design to biotechnologists.This textbook is the first to present the principles of bioprocess engineering in a way that is accessible to biological scientists. Other texts on bioprocess engineering currently available assume that the reader already has engineering training. On the other hand, chemical engineering textbooks do not consider examples from bioprocessing, and are written almost exclusively with the petroleum and chemical industries in mind. This publication explains process analysis from an engineering point of view, but refers exclusively to the treatment of biological systems. Over 170 problems and worked examples encompass a wide range of applications, including recombinant cells, plant and animal cell cultures, immobilised catalysts as well as traditional fermentation systems.* * First book to present the principles of bioprocess engineering in a way that is accessible to biological scientists* Explains process analysis from an engineering point of view, but uses worked examples relating to biological systems* Comprehensive, single-authored* 170 problems and worked examples encompass a wide range of applications, involving recombinant plant and animal cell cultures, immobilized catalysts, and traditional fermentation systems* 13 chapters, organized according to engineering sub-disciplines, are groupled in four sections - Introduction, Material and Energy Balances, Physical Processes, and Reactions and Reactors* Each chapter includes a set of problems and exercises for the student, key references, and a list of suggestions for further reading* Includes useful appendices, detailing conversion factors, physical and chemical property data, steam tables, mathematical rules, and a list of symbols used* Suitable for course adoption - follows closely curricula used on most bioprocessing and process biotechnology courses at senior undergraduate and graduate levels.


How Tobacco Smoke Causes Disease

How Tobacco Smoke Causes Disease

Author: United States. Public Health Service. Office of the Surgeon General

Publisher:

Published: 2010

Total Pages: 728

ISBN-13:

DOWNLOAD EBOOK

This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.


Basic Physiology for Anaesthetists

Basic Physiology for Anaesthetists

Author: David Chambers

Publisher: Cambridge University Press

Published: 2019-07-25

Total Pages: 469

ISBN-13: 1108463991

DOWNLOAD EBOOK

Easily understood, up-to-date and clinically relevant, this book provides junior anaesthetists with an essential physiology resource.


Handbook of CTG Interpretation

Handbook of CTG Interpretation

Author: Edwin Chandraharan

Publisher: Cambridge University Press

Published: 2017-02-23

Total Pages: 257

ISBN-13: 1107485509

DOWNLOAD EBOOK

This practical manual promotes an evidence-based paradigm of fetal heart rate monitoring during labour, moving away from the traditional 'pattern-based' interpretation to physiology-based interpretation. Aimed at obstetricians and midwives, it is useful to all those involved in multiprofessional intrapartum care.