The Textbook of Nephro-Endocrinology is the definitive translational reference in the field of nephro-endocrinology, investigating both the endocrine functions of the kidneys and how the kidney acts as a target for hormones from other organ systems. It offers researchers and clinicians expert, gold-standard analyses of nephro-endocrine research and translation into the treatment of diseases such as anemia, chronic kidney disease (CKD), rickets, osteoporosis, and, hypoparathyroidism. - Investigates both the endocrine functions of the kidneys and how the kidney acts as a target for hormones from other organ systems - Presents a uniquely comprehensive and cross-disciplinary look at all aspects of nephro-endocrine disorders in one reference work - Clear translational presentations by the top endocrinologists and nephrologists in each specific hormone or functional/systems field
Lipid Second Messengers provides detailed methodology for analysis of various lipid signaling pathways. Authoritative contributors explain the factors that regulate lipid second messenger production by agonist-activated enzymes and examine their products. Topics discussed include procedures used to measure lipid-derived mediators such as lysophospholipids, arachidonic acid, eicosanoids, anandamide, and ceramides, and the enzymes responsible for generating these messengers, such as phospholipases, prostaglandin endoperoxide synthases, and sphingomyelinase.
This volume provides comprehensive coverage of the current knowledge of the physiology of the endocrine system and hormone synthesis and release, transport, and action at the molecular and cellular levels. It presents essential as well as in-depth information of value to both medical students and specialists in Endocrinology, Gynecology, Pediatrics, and Internal Medicine. Although it is well established that the endocrine system regulates essential functions involved in growth, reproduction, and homeostasis, it is increasingly being recognized that this complex regulatory system comprises not only hormones secreted by the classic endocrine glands but also hormones and regulatory factors produced by many organs, and involves extensive crosstalk with the neural and immune system. At the same time, our knowledge of the molecular basis of hormone action has greatly improved. Understanding this complexity of endocrine physiology is crucial to prevent endocrine disorders, to improve the sensitivity of our diagnostic tools, and to provide the rationale for pharmacological, immunological, or genetic interventions. It is such understanding that this book is designed to foster.
Genetic Steroid Disorders, Second Edition targets adult and pediatric endocrinologists, clinical geneticists, genetic counselors, reproductive endocrinologists, neonatologists, urologists, and psychoendocrinologists. It is designed to assist these specialists in the diagnosis and treatment of steroid disorders. This revision includes a new chapter on "Gonadotropins, Obesity and Bone" and new research on non-invasive prenatal diagnosis with cell-free DNA. Chapters are thoroughly updated covering steroid disorders, the genetic bases for the disorder and case presentations, This definitive reference belongs in every medical library! - Presents a comprehensive, translational look at all aspects of genetic steroid disorders in one reference work - Provides a common language for endocrinologists, geneticists, molecular pathologists, and genetic counselors to discuss and diagnose genetic steroid disorders Saves clinicians and researchers time in quickly accessing the very latest details on genetic tests and diagnoses as opposed to searching through thousands of journal articles - Highlights significant discoveries with clinical relevance, presenting insight into which medications to use based on the genetic makeup of a patient - Teaches the best strategies and most effective use of genetic information in the patient counseling setting
This book is an open access dissemination of the EU COST Action ADMIRE in Aldosterone/Mineralocorticoid Receptor (MR) physiology and pathophysiology. Aldosterone is the major hormone regulating blood pressure. Alterations in blood levels of aldosterone and genetic mutations in the MR receptor are major causes of hypertension and comorbidities. Many of the drugs in clinical use, and in development for treating hypertension, target aldosterone and MR actions in the kidney and cardiovascular system. The ADMIRE book assembles review chapters from 16 European ADMIRE laboratories providing the latest insights into mechanisms of aldosterone synthesis/secretion, aldosterone/MR physiology and signaling, and the pathophysiological roles of aldosterone/MR activation.
Growth Hormone and the Heart endeavors to bring together knowledge that has been accumulated in the area of GH and the heart, from basic to clinical studies, by research groups working on this topic throughout the world. Lessons from different experimental models and from several human diseases (acromegaly, adult GH deficiency, heart failure) suggest to endocrinologists and cardiologists that GH may not only have a role in the physiology and pathophysiology of heart function, but that GH itself may have a place in the treatment of primary heart diseases (such as dilated cardiomyopathy) or of cardiac complications of hypopituitarism. Growth Hormone and the Heart will be a useful update of the research produced in the field of cardiovascular endocrinology. The Editors also hope that this book will serve as the primary step in the recognition of the wide physiological and clinical significance of GH and heart interactions.
This textbook focuses on the vascular biology and physiology that underlie vascular disorders in clinical medicine. Vascular biomedicine is a rapidly growing field as new molecular mechanisms of vascular health and disease are unraveled. Many of the major cardiovascular diseases including coronary artery disease, heart failure, stroke and vascular dementia are diseases of the vasculature. In addition vascular injury underpins conditions like kidney failure and cardiovascular complications of diabetes. This field is truly multidisciplinary involving scientists in many domains such as molecular and vascular biology, cardiovascular physiology and pharmacology and immunology and inflammation. Clinically, specialists across multiple disciplines are involved in the management of patients with vascular disorders, including cardiologists, nephrologists, endocrinologists, neurologists and vascular surgeons. This book covers a wide range of topics and provides an overview of the discipline of vascular biomedicine without aiming at in-depth reviews, but rather offering up-to-date knowledge organized in concise and structured chapters, with key points and pertinent references. The structure of the content provides an integrative and translational approach from basic science (e.g. stem cells) to clinical medicine (e.g. cardiovascular disease). The content of this book is targeted to those who are new in the field of vascular biology and vascular medicine and is ideal for medical students, graduate and postgraduate students, clinical fellows and academic clinicians with an interest in the vascular biology and physiology of cardiovascular disease and related pathologies.
Most of our knowledge of the physiological control of aldosterone secretion is based on animal experiments and clinical studies which were carried out in the 1950s and early 1960s by a large number of inspired, ingenious and meticulous researchers. Their work has been excellently reviewed by-among others-MULLER (1963), BLAIR WEST et al. (1963), LARAGH and KELLY (1964), GANONG et al. (1966), MULROW (1966), DAVIS (1967) and GROSS (1967). According to the majority of these investigators, aldosterone secretion is primarily regulated by the renin-angiotensin system, with plasma sodium and potassium levels and pituitary secretion of ACTH playing important secondary roles. During the last six years, this hypothesis has been generally accepted and has only occasionally been challenged. The following is an attempt to take-from the perspective of a relatively simple in vitro model-a new look at the efferent axis of the apparently very complex control system maintaining adequate aldosterone production in the mammalian organism. My views are based mainly on a series of experiments which I have performed in order to study more closely the interactions of adrenocortical tissue with substances capable of directly influencing aldosterone bio synthesis.
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
By stimulating adrenal gland and corticosteroid synthesis, the adrenocorticotropic hormone (ACTH) plays a central role in response to stress. In this Research Topic, a particular attention has been given to the recent developments on adrenocortical zonation; the growth-promoting activities of ACTH; the various steps involved in acute and chronic regulation of steroid secretion by ACTH, including the effect of ACTH on circadian rhythms of glucocorticoid secretion. The Research Topic also reviews progress and challenges surrounding the properties of ACTH binding to the MC2 receptor (MC2R), including the importance of melanocortin-2 receptor accessory protein (MRAP) in MC2R expression and function, the various intracellular signaling cascades, which involve not only protein kinase A, the key mediator of ACTH action, but also phosphatases, phosphodiesterases, ion channels and the cytoskeleton. The importance of the proteins involved in the cell detoxification is also considered, in particular the effect that ACTH has on protection against reactive oxygen species generated during steroidogenesis. The impact of the cellular microenvironment, including local production of ACTH is discussed, both as an important factor in the maintenance of homeostasis, but also in pathological situations, such as severe inflammation. Finally, the Research Topic reviews the role that the pituitary-adrenal axis may have in the development of metabolic disorders. In addition to mutations or alterations of expression of genes encoding components of the steroidogenesis and signaling pathways, chronic stress and sleep disturbance are both associated with hyperactivity of the adrenal gland. A resulting effect is increased glucocorticoid secretion inducing food intake and weight gain, which, in turn, leads to insulin and leptin resistance. These aspects are described in detail in this Research Topic by key investigators in the field. Many of the aspects addressed in this Research Topic still represent a stimulus for future studies, their outcome aimed at providing evidence of the central position occupied by the adrenal cortex in many metabolic functions when its homeostasis is disrupted. An in-depth investigation of the mechanisms underlying these pathways will be invaluable in developing new therapeutic tools and strategies.