Regularity Techniques for Elliptic PDEs and the Fractional Laplacian

Regularity Techniques for Elliptic PDEs and the Fractional Laplacian

Author: Pablo Raúl Stinga

Publisher: CRC Press

Published: 2024-07-02

Total Pages: 923

ISBN-13: 1040041574

DOWNLOAD EBOOK

Regularity Techniques for Elliptic PDEs and the Fractional Laplacian presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian. The emphasis is placed on ideas and the development of intuition, while at the same time being completely rigorous. The reader should keep in mind that this text is about how analysis can be applied to regularity estimates. Many methods are nonlinear in nature, but the focus is on linear equations without lower order terms, thus avoiding bulky computations. The philosophy underpinning the book is that ideas must be flushed out in the cleanest and simplest ways, showing all the details and always maintaining rigor. Features Self-contained treatment of the topic Bridges the gap between upper undergraduate textbooks and advanced monographs to offer a useful, accessible reference for students and researchers. Replete with useful references.


The obstacle problem

The obstacle problem

Author: Luis Angel Caffarelli

Publisher: Edizioni della Normale

Published: 1999-10-01

Total Pages: 0

ISBN-13: 9788876422492

DOWNLOAD EBOOK

The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.


Regularity Techniques for Elliptic Pdes and the Fractional Laplacian

Regularity Techniques for Elliptic Pdes and the Fractional Laplacian

Author: Pablo Raúl Stinga

Publisher: C&h/CRC Press

Published: 2024

Total Pages: 0

ISBN-13: 9781032679846

DOWNLOAD EBOOK

"Regularity Techniques for Elliptic PDEs and the Fractional Laplacian presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian. The emphasis is placed on ideas and the development of intuition, while at the same time being completely rigorous. The reader should keep in mind that this text is about how analysis can be applied to regularity estimates. Many methods are nonlinear in nature, but the focus is on linear equations without lower order terms, thus avoiding bulky computations. The philosophy underpinning the book is that ideas must be flushed out in the cleanest and simplest ways, showing all the details and always maintaining rigor"--


Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Author: Jens M. Melenk

Publisher: Springer Nature

Published: 2023-06-30

Total Pages: 571

ISBN-13: 3031204328

DOWNLOAD EBOOK

The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.


Contemporary Research in Elliptic PDEs and Related Topics

Contemporary Research in Elliptic PDEs and Related Topics

Author: Serena Dipierro

Publisher: Springer

Published: 2019-07-12

Total Pages: 502

ISBN-13: 303018921X

DOWNLOAD EBOOK

This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.


The Fractional Laplacian

The Fractional Laplacian

Author: C. Pozrikidis

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 396

ISBN-13: 1315359936

DOWNLOAD EBOOK

The fractional Laplacian, also called the Riesz fractional derivative, describes an unusual diffusion process associated with random excursions. The Fractional Laplacian explores applications of the fractional Laplacian in science, engineering, and other areas where long-range interactions and conceptual or physical particle jumps resulting in an irregular diffusive or conductive flux are encountered. Presents the material at a level suitable for a broad audience of scientists and engineers with rudimentary background in ordinary differential equations and integral calculus Clarifies the concept of the fractional Laplacian for functions in one, two, three, or an arbitrary number of dimensions defined over the entire space, satisfying periodicity conditions, or restricted to a finite domain Covers physical and mathematical concepts as well as detailed mathematical derivations Develops a numerical framework for solving differential equations involving the fractional Laplacian and presents specific algorithms accompanied by numerical results in one, two, and three dimensions Discusses viscous flow and physical examples from scientific and engineering disciplines Written by a prolific author well known for his contributions in fluid mechanics, biomechanics, applied mathematics, scientific computing, and computer science, the book emphasizes fundamental ideas and practical numerical computation. It includes original material and novel numerical methods.


The Fractional Laplacian

The Fractional Laplacian

Author: Wenxiong Chen

Publisher: World Scientific

Published: 2020-06-09

Total Pages: 342

ISBN-13: 9813224010

DOWNLOAD EBOOK

This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this area. The explanations and illustrations are elementary enough so that first year graduate students can follow easily, while it is advanced enough to include many new ideas, methods, and results that appeared recently in research literature, which researchers would find helpful. It focuses on introducing direct methods on the nonlocal problems without going through extensions, such as the direct methods of moving planes, direct method of moving spheres, direct blowing up and rescaling arguments, and so on. Different from most other books, it emphasizes on illuminating the ideas behind the formal concepts and proofs, so that readers can quickly grasp the essence.


75 Years of Mathematics of Computation

75 Years of Mathematics of Computation

Author: Susanne C. Brenner

Publisher: American Mathematical Soc.

Published: 2020-07-29

Total Pages: 364

ISBN-13: 1470451638

DOWNLOAD EBOOK

The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering topics in computational number theory and computational algebra. On the continuous side, there are twelve papers covering topics in machine learning, high dimensional approximations, nonlocal and fractional elliptic problems, gradient flows, hyperbolic conservation laws, Maxwell's equations, Stokes's equations, a posteriori error estimation, and iterative methods. Together they provide a snapshot of significant achievements in the past quarter century in computational mathematics and also in important current trends.


A3N2M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models

A3N2M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models

Author: Tadele Mengesha

Publisher: Springer Nature

Published: 2023-09-12

Total Pages: 325

ISBN-13: 3031340892

DOWNLOAD EBOOK

This volume collects papers based on plenary and invited talks given at the 50th Barrett Memorial Lectures on Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models that was organized by the University of Tennessee, Knoxville and held virtually in May 2021. The three-day meeting brought together experts from the computational, scientific, engineering, and mathematical communities who work with nonlocal models. These proceedings collect contributions and give a survey of the state of the art in computational practices, mathematical analysis, applications of nonlocal models, and explorations of new application domains. The volume benefits from the mixture of contributions by computational scientists, mathematicians, and application specialists. The content is suitable for graduate students as well as specialists working with nonlocal models and covers topics on fractional PDEs, regularity theory for kinetic equations, approximation theory for fractional diffusion, analysis of nonlocal diffusion model as a bridge between local and fractional PDEs, and more.