Detecting Regime Change in Computational Finance

Detecting Regime Change in Computational Finance

Author: Jun Chen

Publisher: CRC Press

Published: 2020-09-14

Total Pages: 165

ISBN-13: 1000220168

DOWNLOAD EBOOK

Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning and data science. About the Authors Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019. Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.


Detecting Regime Change in Computational Finance

Detecting Regime Change in Computational Finance

Author: Jun Chen

Publisher: CRC Press

Published: 2020-09-14

Total Pages: 148

ISBN-13: 1000220362

DOWNLOAD EBOOK

Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning and data science. About the Authors Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019. Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.


Granville’s New Key to Stock Market Profits

Granville’s New Key to Stock Market Profits

Author: Joseph E. Granville

Publisher: Pickle Partners Publishing

Published: 2018-12-05

Total Pages: 552

ISBN-13: 1789126037

DOWNLOAD EBOOK

In this remarkable stock market study, one of Wall Street’s best known market analysts reveals a new technical tool he developed for gauging the pulse of the trading cycle. Called the On Balance Volume Theory, this tool tends to fill in some of the conspicuous voids in the famous Dow Theory—especially the lack of discussion and use of stock volume figures. As straightforward as a set of bridge rules, on-balance volume (OBV) denotes each buy and sell signal so that a trader can follow them without his own emotions tending to lead him astray—emotions causing most of the market misjudgements that take place. The Granville OBV method is essentially scientific, has a high degree of accuracy and has many automatic features. The reader of this book will be introduced to a method whereby he may benefit by the earlier movements of volume over price—the “early warning” radar of volume buy and sell signals.


Handbook of Financial Econometrics

Handbook of Financial Econometrics

Author: Yacine Ait-Sahalia

Publisher: Elsevier

Published: 2009-10-19

Total Pages: 809

ISBN-13: 0080929842

DOWNLOAD EBOOK

This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections


Multi-Period Trading Via Convex Optimization

Multi-Period Trading Via Convex Optimization

Author: Stephen Boyd

Publisher:

Published: 2017-07-28

Total Pages: 92

ISBN-13: 9781680833287

DOWNLOAD EBOOK

This monograph collects in one place the basic definitions, a careful description of the model, and discussion of how convex optimization can be used in multi-period trading, all in a common notation and framework.


How Novelty and Narratives Drive the Stock Market

How Novelty and Narratives Drive the Stock Market

Author: Nicholas Mangee

Publisher: Cambridge University Press

Published: 2021-10-14

Total Pages: 451

ISBN-13: 1108983588

DOWNLOAD EBOOK

'Animal spirits' is a term that describes the instincts and emotions driving human behaviour in economic settings. In recent years, this concept has been discussed in relation to the emerging field of narrative economics. When unscheduled events hit the stock market, from corporate scandals and technological breakthroughs to recessions and pandemics, relationships driving returns change in unforeseeable ways. To deal with uncertainty, investors engage in narratives which simplify the complexity of real-time, non-routine change. This book assesses the novelty-narrative hypothesis for the U.S. stock market by conducting a comprehensive investigation of unscheduled events using big data textual analysis of financial news. This important contribution to the field of narrative economics finds that major macro events and associated narratives spill over into the churning stream of corporate novelty and sub-narratives, spawning different forms of unforeseeable stock market instability.


Trading Regime Analysis

Trading Regime Analysis

Author: Murray Gunn

Publisher: John Wiley & Sons

Published: 2009-01-15

Total Pages: 440

ISBN-13: 0470742844

DOWNLOAD EBOOK

Trading Regime Analysis is a groundbreaking work on how markets behave and how to profit from this behaviour. The book describes that it is the human nature of markets which explains why this behaviour exists and whether one believes in fundamental or technical market analysis, the ebb and flow of volatility is the one undeniable truth that exists in financial and commodity markets. It is the up and down cycles of volatility that is the manifestation of human psychology as the ultimate driver of markets and volatility, like human behaviour, has a distinct cycle to it. Offers in detail the methods that can be used to identify whether a market is about to start trending or about to enter a period of range trading Highlights important applications for this analysis for institutional investors, asset allocators, hedge fund managers and retail investors Provides unique content as there are no existing titles on trading regime analysis


Markov-Switching Vector Autoregressions

Markov-Switching Vector Autoregressions

Author: Hans-Martin Krolzig

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 369

ISBN-13: 364251684X

DOWNLOAD EBOOK

This book contributes to re cent developments on the statistical analysis of multiple time series in the presence of regime shifts. Markov-switching models have become popular for modelling non-linearities and regime shifts, mainly, in univariate eco nomic time series. This study is intended to provide a systematic and operational ap proach to the econometric modelling of dynamic systems subject to shifts in regime, based on the Markov-switching vector autoregressive model. The study presents a comprehensive analysis of the theoretical properties of Markov-switching vector autoregressive processes and the related statistical methods. The statistical concepts are illustrated with applications to empirical business cyde research. This monograph is a revised version of my dissertation which has been accepted by the Economics Department of the Humboldt-University of Berlin in 1996. It con sists mainly of unpublished material which has been presented during the last years at conferences and in seminars. The major parts of this study were written while I was supported by the Deutsche Forschungsgemeinschajt (DFG), Berliner Graduier tenkolleg Angewandte Mikroökonomik and Sondeiforschungsbereich 373 at the Free University and Humboldt-University of Berlin. Work was finally completed in the project The Econometrics of Macroeconomic Forecasting founded by the Economic and Social Research Council (ESRC) at the Institute of Economies and Statistics, University of Oxford. It is a pleasure to record my thanks to these institutions for their support of my research embodied in this study.


Stochastic Programming

Stochastic Programming

Author: Horand Gassmann

Publisher: World Scientific

Published: 2013

Total Pages: 549

ISBN-13: 981440750X

DOWNLOAD EBOOK

This book shows the breadth and depth of stochastic programming applications. All the papers presented here involve optimization over the scenarios that represent possible future outcomes of the uncertainty problems. The applications, which were presented at the 12th International Conference on Stochastic Programming held in Halifax, Nova Scotia in August 2010, span the rich field of uses of these models. The finance papers discuss such diverse problems as longevity risk management of individual investors, personal financial planning, intertemporal surplus management, asset management with benchmarks, dynamic portfolio management, fixed income immunization and racetrack betting. The production and logistics papers discuss natural gas infrastructure design, farming Atlantic salmon, prevention of nuclear smuggling and sawmill planning. The energy papers involve electricity production planning, hydroelectric reservoir operations and power generation planning for liquid natural gas plants. Finally, two telecommunication papers discuss mobile network design and frequency assignment problems.