Unitary Reflection Groups

Unitary Reflection Groups

Author: Gustav I. Lehrer

Publisher: Cambridge University Press

Published: 2009-08-13

Total Pages: 303

ISBN-13: 0521749891

DOWNLOAD EBOOK

A unitary reflection is a linear transformation of a complex vector space that fixes each point in a hyperplane. Intuitively, it resembles the transformation an image undergoes when it is viewed through a kaleidoscope, or an arrangement of mirrors. This book gives a complete classification of all finite groups which are generated by unitary reflections, using the method of line systems. Irreducible groups are studied in detail, and are identified with finite linear groups. The new invariant theoretic proof of Steinberg's fixed point theorem is treated fully. The same approach is used to develop the theory of eigenspaces of elements of reflection groups and their twisted analogues. This includes an extension of Springer's theory of regular elements to reflection cosets. An appendix outlines links to representation theory, topology and mathematical physics. Containing over 100 exercises, ranging in difficulty from elementary to research level, this book is ideal for honours and graduate students, or for researchers in algebra, topology and mathematical physics. Book jacket.


Introduction to Complex Reflection Groups and Their Braid Groups

Introduction to Complex Reflection Groups and Their Braid Groups

Author: Michel Broué

Publisher: Springer

Published: 2010-01-28

Total Pages: 150

ISBN-13: 3642111750

DOWNLOAD EBOOK

This book covers basic properties of complex reflection groups, such as characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, including the basic findings of Springer theory on eigenspaces.


Geometric Group Theory Down Under

Geometric Group Theory Down Under

Author: John Cossey

Publisher: Walter de Gruyter

Published: 2011-05-02

Total Pages: 349

ISBN-13: 311080686X

DOWNLOAD EBOOK

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.


The Character Theory of Finite Groups of Lie Type

The Character Theory of Finite Groups of Lie Type

Author: Meinolf Geck

Publisher: Cambridge University Press

Published: 2020-02-27

Total Pages: 406

ISBN-13: 1108808905

DOWNLOAD EBOOK

Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.


New Developments in Singularity Theory

New Developments in Singularity Theory

Author: Dirk Siersma

Publisher: Springer Science & Business Media

Published: 2001-06-30

Total Pages: 484

ISBN-13: 9780792369967

DOWNLOAD EBOOK

Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.


Group Representation Theory

Group Representation Theory

Author: Meinolf Geck

Publisher: EPFL Press

Published: 2007-05-07

Total Pages: 472

ISBN-13: 9780849392436

DOWNLOAD EBOOK

After the pioneering work of Brauer in the middle of the 20th century in the area of the representation theory of groups, many entirely new developments have taken place and the field has grown into a very large field of study. This progress, and the remaining open problems (e.g., the conjectures of Alterin, Dade, Broué, James, etc.) have ensured that group representation theory remains a lively area of research. In this book, the leading researchers in the field contribute a chapter in their field of specialty, namely: Broué (Finite reductive groups and spetses); Carlson (Cohomology and representations of finite groups); Geck (Representations of Hecke algebras); Seitz (Topics in algebraic groups); Kessar and Linckelmann (Fusion systems and blocks); Serre (On finite subgroups of Lie groups); Thévenaz (The classification of endo-permutaion modules); and Webb (Representations and cohomology of categories).


Configuration Spaces

Configuration Spaces

Author: Filippo Callegaro

Publisher: Springer

Published: 2016-08-27

Total Pages: 385

ISBN-13: 3319315803

DOWNLOAD EBOOK

This book collects the scientific contributions of a group of leading experts who took part in the INdAM Meeting held in Cortona in September 2014. With combinatorial techniques as the central theme, it focuses on recent developments in configuration spaces from various perspectives. It also discusses their applications in areas ranging from representation theory, toric geometry and geometric group theory to applied algebraic topology.