The generation of novel redox systems under nano-space control is one of the most exciting fields in present organic, inorganic, and supramolecular chemistry. The authors have drawn together the newest information on the construction of such novel redox systems using nano-space control of complexation or molecular chain-induced spaces and metal- or self-assembled spaces through combining techniques in coordination, supramolecular, and bio-inspired chemistry. Such design on the nano level produces hybrid conjugated systems composed of transition and synthetic metals, metallohosts, redox-active self-assembled monolayers of helical peptides, DNA-directed metal arrays, photoactive antibody systems, chiral rotaxanes, and redox-active imprinted polymers. In the future, these systems will be the basis for novel selective electron-transfer reactions as well as new functional materials and catalysts.
Providing a thorough overview of leading research from internationally-recognized contributing authors, this book describes methods for the preparation and application of redox systems for organic electronic materials like transistors, photovoltaics, and batteries. Covers bond formation and cleavage, supramolecular systems, molecular design, and synthesis and properties Addresses preparative methods, unique structural features, physical properties, and material applications of redox active p-conjugated systems Offers a useful guide for both academic and industrial chemists involved with organic electronic materials Focuses on the transition-metal-free redox systems composed of organic and organo main group compounds
In this book the authors describe how they reproduced the redox functions of biocatalysts artificially. It includes the introduction and discussion of synthetic reactions via electron transfer, hybrid π-conjugated systems, and biorganometallic conjugates as novel redox systems. The work was conducted in pioneering fields based on redox systems, in synthetic organic chemistry, synthetic materials chemistry, and bioorganometallic chemistry. The step-by-step process is illustrated by the three major parts of the book: redox reactions (selective synthetic methods using metal-induced redox reactions), redox systems (design and redox function of conjugated complexes with polyanilines or quinonediimines and molecular bowl sumanene), and design of bioorganometallic conjugates to induce chirality-organized structures (bio-related structurally controlled systems). This systematic and up-to-date description will be of special interest to graduate students who are meeting the new challenges of chemistry, as well as to post-doctoral researchers and other practicing chemists in both academic and industrial settings.
This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developments in these emerging areas, with an emphasis on fundamental concepts and current applications of functional organometallic complexes and related metal-based molecules for energy research. With contributions from front-line researchers in the field from academia and industry, this timely book provides a valuable contribution to the scientific community in the field of energy science related to metal-based molecular materials. Wai-Yeung Wong, PhD, is Chair Professor and Head of the Department of Chemistry at Hong Kong Baptist University, Hong Kong, P. R. China.
Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.
Cooperative and synergistic chemical events have attracted significant attention from many researchers engaged in organic chemistry, inorganic chemistry, biological chemistry, polymer chemistry, medicinal chemistry, and other related materials sciences. Synergistic supramolecular systems could be developed to amplify the functions and integration o
Ladder Polymers An essential reference covering the latest research on ladder polymers Ladder polymers are a unique macromolecular architecture, consisting of a continuous strand of fused rings in their backbones. Such distinctive structures lead to a range of interesting thermal, optical, and electronic properties and self-assembly behaviors, which have been explored for various applications. The book Ladder Polymers: Synthesis, Properties, Applications, and Perspectives presents a collection of diverse topics in ladder polymers consisting of historical overview, state-of-the-art research and development, and potential future directions, written by leading researchers in the related fields. The topics include: Conjugated ladder polymers and graphene nanoribbons Nonconjugated microporous ladder polymers or polymers of intrinsic microporosity Covalent double-stranded polymers Supramolecular double-helical polymers and oligomers Two dimensional polymers This book is a one-stop resource on all the critical research developments in the subject of ladder polymers for broad readership including organic, polymer, and physical chemists, materials scientists and engineers, and chemical engineers.
John Berry: Metal-Metal Bonds in Chains of Three or More Metal Atoms: From Homometallic to Heterometallic Chains.- Malcolm Chisholm: Electronically Coupled MM Quadruple Bonded Complexes of Molybdenum and Tungsten.- Philip Power: Transition Metal Complexes Stabilized by Bulky Terphenyl Ligands: Applications to Metal–Metal Bonded Compounds.- Gerard Parkin: Metal–Metal Bonding in Bridging Hydride and Alkyl Compounds.- Roland Fischer and Gernot Frenking: Structure and Bonding of Metal Rich Coordination Compounds Containing Low Valent Ga(I) and Zn(I) Ligands.- Mike Hill: Homocatenation of Metal and Metalloid Main Group Elements.- Constandinos A. Tsipis: Aromaticity/Antiaromaticity in "Bare" and ‘‘Ligand-Stabilized’’ Rings of Metal Atoms.- Alexander Boldyrev: All-Transition Metal Aromaticity and Antiaromaticity.
In order to understand the basic aspects of an electrochemical investigation on inorganic molecules (in its widest meaning, of any molecule which contains at least one metal centre) it must be taken into account that in these molecules the metal-ligand bonds are of the prevailingly covalent type. Since electrochemical techniques allow you to add or remove electrons in a controlled manner, it is conceivable that the addition or removal of electrons inside these molecules can lead to the formation of new bonds or to the breakage of existing bonds. The main aim of this book is to study the effects of such electron addition and removal processes on the molecular frames. The second edition of this classic book has been fully revised and updated and is a straightforward, logical introduction to electrochemical investigations for inorganic chemists. All chapters have been rewritten with new material including: - the addition of reactivity with nitric oxide to the chapter on the reactivity of metal complexes with small molecules - thiolate-protected gold nanoclusters has been added to the chapter on metal-sulfur and metal-carbonyl clusters - a new chapter on the digital simulation of electrochemical responses - a new chapter on the theoretical calculations to explain the nature of the electrochemical activity of metal complexes - new chapters on spectroelectrochemistry and electrochemiluminescence. The book covers every aspect of inorganic electrochemistry - the introduction is followed by chapters on the basic aspects of electrochemistry followed by practical and applicative aspects and ends with full appendices. It is probably the only publication with a simple approach to electrochemical aspects of the topics in inorganic chemistry. Bridging the gap between undergraduate and research-level electrochemistry books, this publication will be a welcome addition to the literature of inorganic chemists. It will also be particularly useful to final year students in chemistry and as background reading for graduates and researchers without adequate electrochemical knowledge to become active in the discipline or who want to collaborate with electrochemists.
Systematically covering all the latest developments in the field, this is a comprehensive and handy introduction to metal-metal bonding. The chapters follow a uniform, coherent structure for a clear overview, allowing readers easy access to the information. The text covers such topics as synthesis, properties, structures, notable features, reactivity and examples of applications of the most important compounds in each group with metal-metal bonding throughout the periodic table. With its general remarks at the beginning of each chapter, this is a must-have reference for all molecular inorganic chemists, including PhD students and postdocs, as well as more experienced researchers.