This essential volume comprehensively discusses redox-active therapeutics, focusing particularly on their molecular design, mechanistic, pharmacological and medicinal aspects. The first section of the book describes the basic aspects of the chemistry and biology of redox-active drugs and includes a brief overview of the redox-based pathways involved in cancer and the medical aspects of redox-active drugs, assuming little in the way of prior knowledge. Subsequent sections and chapters describe more specialized aspects of central nervous system injuries, neurodegenerative diseases, pain, radiation injury and radioprotection (such as of brain, lungs, head and neck and erectile function) and neglected diseases (e.g., leishmaniasis). It encompasses several major classes of redox-active experimental therapeutics, which include porphyrins, salens, nitrones, and most notably metal-containing (e.g., Mn, Fe, Cu, Zn, Sb) drugs as either single compounds or formulations with nanomaterials and quantum dots. Numerous illustrations, tables and figures enhance and complement the text; extensive references to relevant literature are also included. Redox-Active Therapeutics is an invaluable addition to Springer’s Oxidative Stress in Applied Basic Research and Clinical Practice series. It is essential reading for researchers, clinicians and graduate students interested in understanding and exploring the Redoxome—the organism redox network—as an emerging frontier in drug design, redox biology and medicine.
Peptides and proteins are crucial biomolecules in life. The manifold functions they carry out range from molecular recognition and signaling to catalysis and immune response. However, the native systems are limited to a reduced toolbox of chemical functionalities as well as tridimensional structures. Widening these toolboxes could pave the way to engineer peptides and proteins with enhanced properties compared to their native counterparts and/or with structures and functions unprecedented in Nature. Advances in the chemical and biological synthesis of peptides and proteins, in computational tools, in molecular biology and in high-throughput screening methods are making this realm possible.This book aims to give an overview of the last developments in the field of peptide and protein engineering. It comprises a collection of chapters that span from the production of simple non-proteinogenic building blocks and peptidic scaffolds of different sizes and structures to more complex systems including peptide-based nanomaterials, enzymes and artificial metalloenzymes. Different strategies are described where chemical and biological tools have been developed and combined to attain the desired properties and sought functionalities.The diverse systems described in this book highlight the progress in this important field and represent the starting points for the development of functional biomolecules, biomaterials and hybrid systems capable of addressing key societal challenges of our times in relevant areas such health, environment and energy.
Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease Oxidative Stress and Antioxidant Protection begins with a historical perspective of pioneers in oxidative stress with an introductory section that explains the basic principles related to oxidative stress in biochemistry and molecular biology, demonstrating both pathways and biomarkers. This section also covers diagnostic imaging and differential diagnostics. The following section covers psychological, physiologic, pharmacologic and pathologic correlates. This section addresses inheritance, gender, nutrition, obesity, family history, behavior modification, natural herbal-botanical products, and supplementation in the treatment of disease. Clinical trials are also summarized for major medical disorders and efficacy of treatment, with particular focus on inflammation, immune response, recycling, disease progression, outcomes and interventions. Each of the chapters describes what biomarker(s) and physiological functions may be relevant to a concept of specific disease and potential alternative therapy. The chapters cover medical terminology, developmental change, effects of aging, senescence, lifespan, and wound healing, and also illustrates cross-over exposure to other fields. The final chapter covers how and when to interpret appropriate data used in entry level biostatistics and epidemiology. Authored and edited by leaders in the field, Oxidative Stress and Antioxidant Protection will be an invaluable resource for students and researchers studying cell biology, molecular biology, and biochemistry, as well professionals in various health science fields.
Improving the Therapeutic Ratio in Head and Neck Cancer provides a complete review of current approaches to modulating therapeutic sensitivity in head and neck cancer. It presents a broad background of current approaches and by highlighting the potential for clinical translational, introduces a roadmap for how to move promising preclinical findings into the clinic. The book discusses topics such as immunotherapy and molecularly targeted therapies in head and neck cancer, PI3k/mTOR pathway, autophagy inhibition to sensitize HNC to radiation and chemotherapy, TAM and Eph/Ephrin family proteins and metabolic reprogramming to modulate therapeutic sensitivity. Additionally, it details approaches to improve the response to immunotherapy, and Chk1/2 inhibition in radiation and cetuximab resistance. This book is a valuable source to head and neck cancer researchers and advanced students, and to those studying specific approaches in other model systems and disease sites. - Provides key scientific background for clinicians when developing novel clinical trials and important examples for basic scientists of the types of work required to move a concept from the lab to the clinic - Presents consistent pathway diagrams in each chapter, thus making it easier to understand complicated pathways - Includes chapter summaries of the critical next steps needed to move studies from their current state into practice changing clinical data
Oxidative stress is an underlying factor in health and disease. Reactive oxygen species are produced as a result of normal cellular metabolism. The subsequent altered redox state between the formation and the neutralization of pro-oxidants results in their increased levels and therefore leads to cellular damage. Different research disciplines have increased our knowledge of the importance of this cell redox status and the recognition of oxidative stress as a process with implications for many pathophysiological states. Genetic and environmental factors, nutrition and lifestyle may indicate a pro-oxidative and pro-inflammatory state, linked to alterations in cellular structure and function. Oxidative stress emerges as a common, unifying factor in several conditions including diabetes and cardiovascular diseases. This eBook aims to provide novel data regarding the role played by oxidative stress and inflammation in the development of chronic diseases and the different classes of therapeutics from the bench to the clinic, stressing the awareness of these concepts for the treatment of disease. In addition, articles addressing an overview of the role of oxidative stress in vascular diseases reviewing some current concepts indicating that oxidative stress and inflammation are key mechanisms linking vascular diseases and current state-of-the-art approaches to monitor, prevent and inhibit oxidative stress will be highlighted. There is a close relation between oxidative stress, inflammation and cardiovascular diseases. Despite the great amount of investigation carried out in the field, there are still uncertainties about the mechanisms by which free radicals can modify tissues such as perivascular adipose tissue that ultimately will reflect on vascular function. This eBook will focus on articles that can explore and identify these mechanisms. Concurrent with this understanding of oxidative stress milieu, it is necessary to recognize the need for new pharmacological tools effective in restoring oxidative balance. The abundance of new information and the paradigm shift in our understanding of how antioxidants and other redox-active drugs work in a wide variety of vascular diseases will be specifically highlighted. This eBook will provide a comprehensive, up-to-date source of information on the design and mechanistic, pharmacological, and medicinal aspects of redox-active therapeutics. Finally, a unique feature of the eBook is to provide a way to foster an enthralling discussion revisiting old paradigms and finding new solutions for the treatment of vascular diseases. The topic will include original research articles, hypotheses, perspectives and (mini)reviews from experts in the field. The next decade shows promise for the translation of this body of knowledge to novel human therapeutics and this eBook will enable to increment our knowledge in this field.
Metal-based anticancer drugs are among the most successful therapeutic agents, as evidenced by the frequent prescription of selected platinum and arsenic compounds to patients. Metal-based Anticancer Agents covers the interdisciplinary world of inorganic drug discovery and development by introducing the most prominent compound classes based on different transition metals, discussing emerging concepts and enabling methods, as well as presenting key pre-clinical and clinical aspects. Recent progress on the unique features of next-generation targeted metal-based anticancer agents, including supramolecular coordination complexes used for both therapy and drug delivery, promise a bright future beyond the benefits of pure cytotoxic activity. With contributions from global leaders in the field, this book will serve as a useful reference to established researchers as well as a practical guide to those new to metallodrugs, and postgraduate students of medicinal chemistry and metallobiology.
Oxidative Stress: Eustress and Distress presents current knowledge on oxidative stress within the framework of redox biology and translational medicine. It describes eustress and distress in molecular terms and with novel imaging and chemogenetic approaches in four sections: - A conceptual framework for studying oxidative stress. - Processes and oxidative stress responses. Signaling in major enzyme systems (oxidative eustress), and damaging modification of biomolecules (oxidative distress). - The exposome addresses lifelong exposure and impact on health, nutrient sensing, exercise and environmental pollution. - Health and disease processes, including ischemia-reperfusion injury, developmental and psychological disorders, hepatic encephalopathy, skeletal muscle disorders, pulmonary disease, gut disease, organ fibrosis, and cancer. Oxidative Stress: Eustress and Distress is an informative resource useful for active researchers and students in biochemistry, molecular biology, medicinal chemistry, pharmaceutical science, nutrition, exercise physiology, analytical chemistry, cell biology, pharmacology, clinical medicine, and environmental science. - Characterizes oxidative stress within the framework of redox biology, redox signaling, and medicine - Empowers researchers and students to quantify specific reactants noninvasively, identify redox biomarkers, and advance translational studies - Features contributions from international leaders in oxidative stress and redox biology research
Microbial oxidative enzymes are in need of today and in the future also. Several microbial oxidative enzymes are being used by various sectors like food, agriculture, medicine, detergents, leather, paper, etc. Microbial oxidative enzymes are a natural product, hence, the application of these enzymes is eco-friendly. Oxidative enzymes from microbes like bacteria, and fungi will be helpful in numerous applications including plant-soil health management, and waste treatments. This book will be more informative as well as useful for related industries and end users and will be of great value to those interested in present-day research on oxidation-reduction enzymes. In the coming years, this book will be a game changer for the field of oxidative enzyme development and its applications.
MicroRNAs (miRNAs) are small noncoding RNAs that are 19–24 nucleotides in length, following maturation. Recent evidence has demonstrated their key role as post-transcriptional regulators of gene expression through the binding of specific sequences within target messenger RNA (mRNA). miRNAs are involved in the synthesis of a very large number of proteins, and it is speculated that they could regulate up to 30% of the human genome. They control virtually every cellular process and are essential for animal development, cell differentiation, and homeostasis. Altered miRNA expression has been linked to such pathological events as inflammatory, degenerative, or autoimmune processes and have been associated with several diseases, including cancer, cardiovascular diseases, diabetes mellitus, and rheumatic and neurological disorders. Recently, miRNAs have been found in many different biological fluids, and this observation suggests the potential of miRNAs as new candidate biomarkers for diagnosis, classification, prognosis, and responsiveness in the treatment of different pathological conditions. Furthermore, the development of therapeutic strategies that involve either restoring or repressing miRNAs expression and activity has attracted much attention. Significant progress has been made in the systems for delivery of miRNAs, even if substantial improvements in this area are still necessary. Although they have been extensively studied, a number of interesting questions regarding the physiological and pathological role of miRNAs have been postulated, and their potential diagnostic and therapeutic role remain yet unanswered. Reactive oxygen species (ROS) are free radical-containing oxygen molecules derived from cellular oxidative metabolism, including enzyme activities and mitochondrial respiration, and play a pivotal role in many cellular functions. Whereas ROS are essential for normal cellular processes, their aberrant production, or failure of the capacity to scavenge excessive ROS, induces an altered redox status with excessive synthesis of free radicals, leading to an imbalance in the redox environment of the cell. The loss of normal ROS levels causes lipid, protein, and DNA damage, which contribute to the development of various pathologies including neurological disorders, rheumatic and cardiovascular diseases, diabetes, and cancer. Increasing evidence highlights that there is crosstalk between miRNAs and components of redox signaling, even if this complex and the characteristics of mutual interaction need to be amply elucidated. Hence, both miRNAs and oxidative stress are involved in the multifactorial development and progression of acute and chronic diseases by influencing numerous signaling and metabolic pathways. The Special Issue entitled "Crosstalk between MicroRNA and Oxidative Stress in Physiology and Pathology" of the International Journal of Molecular Sciences includes original articles and reviews that provide new insights into the interaction between miRNAs and oxidative stress under normal and pathological conditions which can assist in the development of new therapeutic strategies. Finally, I would like to thank all the authors for their excellent contribution. I hope this Special Issue will provide readers with updated knowledge about the role of miRNAs and oxidative stress in physiology and pathology.