Recrystallization and Related Annealing Phenomena

Recrystallization and Related Annealing Phenomena

Author: F.J. Humphreys

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 520

ISBN-13: 008098388X

DOWNLOAD EBOOK

The annealing of deformed materials is of both technological importance and scientific interest. The phenomena have been most widely studied in metals, although they occur in all crystalline materials such as the natural deformation of rocks and the processing of technical ceramics. Research is mainly driven by the requirements of industry, and where appropriate, the book discusses the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes.The subjects treated in this book are all active research areas, and form a major part of at least four regular international conference series. However, there have only been two monographs published in recent times on the subject of recrystallization, the latest nearly 20 years ago. Since that time, considerable advances have been made, both in our understanding of the subject and in the techniques available to the researcher.The book covers recovery, recrystallization and grain growth in depth including specific chapters on ordered materials, two-phase alloys, annealing textures and annealing during and after hot working. Also contained are treatments of the deformed state and the structure and mobility of grain boundaries, technologically important examples and a chapter on computer simulation and modelling. The book provides a scientific treatment of the subject for researchers or students in Materials Science, Metallurgy and related disciplines, who require a more detailed coverage than is found in textbooks on physical metallurgy, and a more coherent treatment than will be found in the many conference proceedings and review articles.


Fundamentals of Materials Science

Fundamentals of Materials Science

Author: Eric J. Mittemeijer

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 754

ISBN-13: 3030600564

DOWNLOAD EBOOK

This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. “In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work.” G. Petzow in International Journal of Materials Research. “The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick ‘cook book’ type text, but as a serious, critical treatise for some significant time to come.” G.S. Upadhyaya in Science of Sintering. “The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, ‘Intermezzos’, ‘Epilogues’ and asides within the text from the author’s experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science.” M. Davies in Materials World.


Elements of Metallurgy and Engineering Alloys

Elements of Metallurgy and Engineering Alloys

Author: Flake C. Campbell

Publisher: ASM International

Published: 2008-01-01

Total Pages: 671

ISBN-13: 1615030581

DOWNLOAD EBOOK

This practical reference provides thorough and systematic coverage on both basic metallurgy and the practical engineering aspects of metallic material selection and application.


Recrystallization: Types, Techniques and Applications

Recrystallization: Types, Techniques and Applications

Author: Ke Huang

Publisher:

Published: 2020-03-16

Total Pages: 262

ISBN-13: 9781536167375

DOWNLOAD EBOOK

A very large part of metallic materials is used in the wrought form. Several thermomechanical processing (TMP) steps are usually employed to produce the intermediate or final products, during which recrystallization and its related phenomena such as work hardening, recovery and grain growth may take place. The sophisticated controlling of recrystallization is one of the most effective ways to tailor the microstructures and mechanical properties of metallic components. Recrystallization: Types, Techniques and Applications is the joint work of several well-known active scientists within this field, and each one focuses on the latest developments of their specific topics. This book covers the deformation structure and recovery, recrystallization and grain growth phenomena, characterization of recrystallization, interaction between recrystallization and solute/second phase particles, the competition between phase transformation and recrystallization, as well as numerical modelling of recrystallization. It is a standard reference for practicing engineers and researchers involved in hot deformation and heat treatment of metallic materials.


Recent Developments in the Study of Recrystallization

Recent Developments in the Study of Recrystallization

Author: Peter Wilson

Publisher: BoD – Books on Demand

Published: 2013-02-06

Total Pages: 236

ISBN-13: 9535109626

DOWNLOAD EBOOK

Recrystallization is a phenomenon moderately well documented in the geological and metallurgical literature. This book provides a timely overview of the latest research and methods in a variety of fields where recrystallization is studied and is an important factor. The main advantage of a new look at these fields is the rapid increase in modern techniques, such as TEM, spectrometers and modeling capabilities, all of which are providing us with far better images and analysis than ever previously possible. This book will be invaluable to a wide range of research scientists; metallurgists looking to improve properties of alloys, those interested in how the latest equipment may be used to image grains and to all those who work with frozen aqueous solutions where recrystallization may be a problem.


Thermo-Mechanical Processing of Metallic Materials

Thermo-Mechanical Processing of Metallic Materials

Author: Bert Verlinden

Publisher: Elsevier

Published: 2007-06-07

Total Pages: 551

ISBN-13: 0080544487

DOWNLOAD EBOOK

Thermo-Mechanical Processing of Metallic Materials describes the science and technology behind modern thermo-mechanical processing (TMP), including detailed descriptions of successful examples of its application in the industry. This graduate-level introductory resource aims to fill the gap between two scientific approaches and illustrate their successful linkage by the use of suitable modern case studies. The book is divided into three key sections focusing on the basics of metallic materials processing. The first section covers the microstructural science base of the subject, including the microstructure determined mechanical properties of metals. The second section deals with the current mechanical technology of plastic forming of metals. The concluding section demonstrates the interaction of the first two disciplines in a series of case studies of successful current TMP processing and looks ahead to possible new developments in the field. This text is designed for use by graduate students coming into the field, for a graduate course textbook, and for Materials and Mechanical Engineers working in this area in the industry. * Covers both physical metallurgy and metals processing* Links basic science to real everyday applications* Written by four internationally-known experts in the field


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods

Author: Franz Roters

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 188

ISBN-13: 3527642099

DOWNLOAD EBOOK

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.


A Practical Guide to Rock Microstructure

A Practical Guide to Rock Microstructure

Author: Ron H. Vernon

Publisher: Cambridge University Press

Published: 2004-10-07

Total Pages: 610

ISBN-13: 9780521891332

DOWNLOAD EBOOK

Rock microstructures provide clues for the interpretation of rock history. A good understanding of the physical or structural relationships of minerals and rocks is essential for making the most of more detailed chemical and isotopic analyses of minerals. Ron Vernon discusses the basic processes responsible for the wide variety of microstructures in igneous, sedimentary, metamorphic and deformed rocks, using high-quality colour illustrations. He discusses potential complications of interpretation, emphasizing pitfalls, and focussing on the latest techniques and approaches. Opaque minerals (sulphides and oxides) are referred to where appropriate. The comprehensive list of relevant references will be useful for advanced students wishing to delve more deeply into problems of rock microstructure. Senior undergraduate and graduate students of mineralogy, petrology and structural geology will find this book essential reading, and it will also be of interest to students of materials science.