This book summarizes rapid progress and innovation in transplantation and regenerative medicine - the merger of reconstructive plastic surgery and transplantation - called Vascularized Composite Allotransplantation. This merger includes a wide variety of previously impossible translplantations using grafts derived from organ donors.
3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. - Discusses new possibilities in tissue engineering with 3D printing - Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues - Reviews emerging technologies in addition to commercial techniques
This book summarizes rapid progress and innovation in transplantation and regenerative medicine - the merger of reconstructive plastic surgery and transplantation - called Vascularized Composite Allotransplantation. This merger includes face, hand, uteri, larynx, tongue, penis and trachea translplantations as well as other body part transplants using grafts derived from organ donors. These sorts of transplants are now performed more commonly. Cell therapies for immunomodulation are surrogates for immune responses after transplantation to non-invasive imaging of neuroregeneration for improving functional outcomes after transplant.
Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs
This book presents the state-of-art in regenerative procedures currently applied by aesthetic physicians, plastic surgeons and dermatologists. It is divided into two parts, the first of which provides a detailed introduction to aesthetic medicine and the aging process. The second part, in turn, addresses the current status of techniques and technologies with regard to autologous grafts, covering fat transfer, blood grafts, skin grafts and stem cells. The book examines the surgical applications of these grafts, as well as potential side effects and limitations. Therapy combinations and outcomes round out the coverage. Aesthetic physicians, plastic surgeons and dermatologists interested in performing regenerative procedures for aesthetic purposes will find this book to be a valuable guide.
Interest in the use of stem cells in aesthetic procedures has been increasing rapidly, reflecting the widespread acknowledgment of the tremendous potential of stem cell fat transfer. This is, however, the first book to be devoted entirely to the subject. The book opens by reviewing the history of the development of pluripotent stem cells and the results of research into the biochemistry and physiology of stem cells. Adipose tissue anatomy and survival are discussed and the wide range of aesthetic procedures involving stem cell fat transfer are then described in detail. These procedures relate to the face, breast, buttocks, legs, hands, penis and Poland syndrome. In addition, potential risks and complications are identified. The book has been written by leading experts and will be an invaluable source of information for students, beginners and experienced surgeons in a range of specialties.
This new series, based on a bi-annual conference and its topics, represents a major contribution to the emerging science of cancer research and regenerative medicine. Each volume brings together some of the most pre-eminent scientists working on cancer biology, cancer treatment, cancer diagnosis, cancer prevention and regenerative medicine to share information on currently ongoing work which will help shape future therapies. These volumes are invaluable resources not only for already active researchers or clinicians but also for those entering these fields, plus those in industry. Tissue Engineering and Regenerative Medicine is a proceedings volume which reflects papers presented at the 3rd bi-annual Innovations in Regenerative Medicine and Cancer Research conference; taken with its companion volume Stem Cells: Biology and Engineering it provides a complete overview of the papers from that meeting of international experts.
During the past decade, a wide range of scientific disciplines have adopted the use of adipose-derived stem/stromal cells (ASCs) as an important tool for research and discovery. In Adipose-Derived Stem Cells: Methods and Protocols, experts from the field, including members of the esteemed International Federation of Adipose Therapeutics and Science (IFATS), provide defined and established protocols in order to further codify the utilization of these powerful and accessible cells. With chapters organized around approaches spanning the discovery, pre-clinical, and clinical processes, much of the emphasis is placed on human ASC, while additional techniques involving small and large animal species are included. As a volume in the highly successful Methods in Molecular BiologyTM series, the detailed contributions include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Adipose-Derived Stem Cells: Methods and Protocols serves as a vital reference text for experienced researchers as well as new students on the path to further exploring the incredible potential of ASCs.
This book discusses the current research concepts and the emerging technologies in the field of stem cells and tissue engineering. It is the first authoritative reference documenting all the ways that plastic surgical practice and regenerative medicine science overlap or provide a road map for the future of both specialties. The Editors have provided a valuable service by gathering in one place the leading voices in these two fields in clear and concise manner. Divided into five parts, the book opens with a description of the elements of regenerative medicine including definitions, basic principles of soft and bone tissue regeneration, biomaterials and scaffolds. Current research concepts are explored in the second part of this book, for example mechanotransduction and the utility of extracellular vesicles. In the third part, the editors present the emerging technologies and highlight the novel perspectives on bionic reconstruction and biomimetics in surgery and regenerative medicine. Part four deals with translational aspects including practical information on moving scientific findings from bench to bedside. The final part then describes in detail applications in clinical plastic surgery. Written by leading experts this book is an invaluable resource for researchers, students, beginners and experienced clinicians in a range of specialties. "In your hands is a comprehensive encyclopedia of two rapidly converging fields. Drs Duscher and Shiffman have done an outstanding job of highlighting the interdependent relationship between plastic surgery and regenerative medicine. Ultimately, this is to the benefit of both fields." - Geoffrey C. Gurtner, MD, FACS Johnson and Johnson Distinguished Professor of Surgery Professor (by courtesy) of Bioengineering and Materials Science Inaugural Vice Chairman of Surgery for Innovation Stanford University School of Medicine
This book summarizes the NATO Advanced Research Workshop (ARW) on “Nanoengineered Systems for Regenerative Medicine” that was organized under the auspices of the NATO Security through Science Program. I would like to thank NATO for supporting this workshop via a grant to the co-directors. The objective of ARW was to explore the various facets of regenerative me- cine and to highlight role of the “the nano-length scale” and “nano-scale systems” in defining and controlling cell and tissue environments. The development of novel tissue regenerative strategies require the integration of new insights emerging from studies of cell-matrix interactions, cellular signalling processes, developmental and systems biology, into biomaterials design, via a systems approach. The chapters in the book, written by the leading experts in their respective disciplines, cover a wide spectrum of topics ranging from stem cell biology, developmental biology, ce- matrix interactions, and matrix biology to surface science, materials processing and drug delivery. We hope the contents of the book will provoke the readership into developing regenerative medicine paradigms that combine these facets into cli- cally translatable solutions. This NATO meeting would not have been successful without the timely help of Dr. Ulrike Shastri, Sanjeet Rangarajan and Ms. Sabine Benner, who assisted in the organization and implementation of various elements of this meeting. Thanks are also due Dr. Fausto Pedrazzini and Ms. Alison Trapp at NATO HQ (Brussels, Belgium). The commitment and persistence of Ms.