This book develops innovative techniques from operational research and management science for the design and implementation of a reconfigurable manufacturing system (RMS), and subsequently analyzes and assesses their performance. A reconfigurable manufacturing system (RMS) is a paradigm that can address many of the challenges posed by the modern market. Accordingly, substantial research is now being conducted on RMS, focusing on various levels of decision-making (strategic, tactical and operational). However, as a relatively new research area, there are still only very few books and articles available on reconfigurable manufacturing system design and management. In addition to filling that gap, this book provides a forum for investigating, exchanging ideas on, and disseminating the latest advances in the broad area of RMS applications in today’s industry. Gathering contributions by experts from academia, industry and policy-making, it represents an essential contribution to the existing literature on manufacturing and logistics in general and industry 4.0 in particular.
Dear reader! In your hand you have the second book from the series “XXI Century Techno- gies. ” The first book under the title “Manufacturing Technologies for Machines of the Future” was published by “Springer” in 2003. This book is aimed at solving one of the basic problems in the development of modern machine-building – working out of technologies and manufacturing equipment which would promote the continuous development and improvement of the final product design, rapidly “adaptable” to the requirements of the market as for the quantity, quality, and variety of products manufactured with the lowest cost and minimum time and labor of the product process. In this book the problems of theory and practice of development in the reconfigurable manufacturing systems and transformable factories for various machine-building branches with a focus on automotive industry are discussed. The problems concerning the development of a new class of production systems which in comparison to the flexible manufact- ing systems are composed of a far less quantity of machine-tools (reduced cost of production) are discussed. In comparison to the conventional automated lines (dedicated systems) they make it possible to rapidly transform the equipment for new products manufacturing. The book has some advantages concerning the art of scientific ideas and the presentation of developments.
To date, reconfigurable manufacturing systems (RMSs) are among the most effective manufacturing styles that can offer manufacturers an alternative way of facing up to the challenges of continual changes in production requirements within the global, competitive and dynamic manufacturing environments. However, availability of optimal process plans that are suitable for reconfigurable manufacturing is one of the key enablers - yet to be fully unlocked - for realizing the full benefits of true RMSs. To unlock the process planning key and advance the state of art of reconfigurable manufacturing in the manufacturing industry, a number of questions need to be answered: (i) what decision making models and (ii) what computational techniques, can be applied to provide optimal manufacturing process planning solutions that are suitable for logical reconfiguration in manufacturing systems? To answer these questions, you must understand how to model reconfigurable manufacturing activities in an optimization perspective. You must also understand how to develop and select appropriate optimization techniques for solving process planning problems in manufacturing systems. To this end, Process Planning Optimization in Reconfigurable Manufacturing Systems covers: the design and operation of RMSs, optimal process planning modelling for reconfigurable manufacturing and the design and implementation of heuristic algorithm design techniques. The author explores how to: model optimization problems, select suitable optimization techniques, develop optimization algorithms, comparatively analyze the performance of candidate metaheuristics and how to investigate the effects of optimal process planning solutions on operating levels in manufacturing systems. This book delineates five alternative heuristic algorithm design techniques based on simulated annealing, genetic algorithms and the boltzmann machine that are tasked to solve manufacturing process planning optimization problems in RMSs. After reading this book, you will understand: how a reconfigurable manufacturing system works, the different types of manufacturing optimization problems associated with reconfigurable manufacturing, as well as the conventional and intelligent techniques that are suitable for solving process planning optimization problems. You will also be able to develop and implement effective optimization procedures and algorithms for a wide spectrum of optimization problems in design and reconfigurable manufacturing."
This book develops innovative techniques from operational research and management science for the design and implementation of a reconfigurable manufacturing system (RMS), and subsequently analyzes and assesses their performance. A reconfigurable manufacturing system (RMS) is a paradigm that can address many of the challenges posed by the modern market. Accordingly, substantial research is now being conducted on RMS, focusing on various levels of decision-making (strategic, tactical and operational). However, as a relatively new research area, there are still only very few books and articles available on reconfigurable manufacturing system design and management. In addition to filling that gap, this book provides a forum for investigating, exchanging ideas on, and disseminating the latest advances in the broad area of RMS applications in todays industry. Gathering contributions by experts from academia, industry and policy-making, it represents an essential contribution to the existing literature on manufacturing and logistics in general and industry 4.0 in particular.
“Changeable and Reconfigurable Manufacturing Systems” discusses key strategies for success in the changing manufacturing environment. Changes can often be anticipated but some go beyond the design range, requiring innovative change enablers and adaptation mechanisms. The book presents the new concept of Changeability as an umbrella framework that encompasses paradigms such as agility, adaptability, flexibility and reconfigurability. It provides the definitions and classification of key terms in this new field, and emphasizes the required physical/hard and logical/soft change enablers. The book presents cutting edge technologies and the latest research, as well as future directions to help manufacturers stay competitive. It contains original contributions and results from senior international experts, together with industrial applications. The book serves as a comprehensive reference for professional engineers, managers, and academics in manufacturing, industrial and mechanical engineering.
This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.
"This book addresses the development of reconfigurable embedded control systems and describes various problems in this important research area, which include static and dynamic (manual or automatic) reconfigurations, multi-agent architectures, modeling and verification, component-based approaches, architecture description languages, distributed reconfigurable architectures, real-time and low power scheduling, execution models, and the implementation of such systems"--
An introduction to a powerful and flexible network modeling tool for developing and understanding complex systems, with many examples from a range of industries. Design structure matrix (DSM) is a straightforward and flexible modeling technique that can be used for designing, developing, and managing complex systems. DSM offers network modeling tools that represent the elements of a system and their interactions, thereby highlighting the system's architecture (or designed structure). Its advantages include compact format, visual nature, intuitive representation, powerful analytical capacity, and flexibility. Used primarily so far in the area of engineering management, DSM is increasingly being applied to complex issues in health care management, financial systems, public policy, natural sciences, and social systems. This book offers a clear and concise explanation of DSM methods for practitioners and researchers.
This book consists of peer-reviewed papers, presented at the International Conference on Sustainable Design and Manufacturing (SDM 2021). Leading-edge research into sustainable design and manufacturing aims to enable the manufacturing industry to grow by adopting more advanced technologies and at the same time improve its sustainability by reducing its environmental impact. Relevant themes and topics include sustainable design, innovation and services; sustainable manufacturing processes and technology; sustainable manufacturing systems and enterprises; and decision support for sustainability. Application areas are wide and varied. The book will provide an excellent overview of the latest developments in the sustainable design and manufacturing area.
This book features state-of-the-art contributions from two well-established conferences: Changeable, Agile, Reconfigurable and Virtual Production Conference (CARV2020) and Mass Customization and Personalization Conference (MCPC2020). Together, they focus on the joint design, development, and management of products, production systems, and business for sustainable customization and personalization. The book covers a large range of topics within this domain, ranging from industrial success factors to original contributions within the field.