Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications provides a wide spectrum of current trends in the design of microwave and millimeter circuits and systems. In addition, the book identifies the state-of-the art challenges in microwave and millimeter wave circuits systems design such as behavioral modeling of circuit components, software radio and digitally enhanced front-ends, new and promising technologies such as substrate-integrated-waveguide (SIW) and wearable electronic systems, and emerging applications such as tracking of moving targets using ultra-wideband radar, and new generation satellite navigation systems. Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate. Key Features: Discusses modeling and design strategies for new appealing applications in the domain of microwave and millimeter wave circuits and systems Written by experts active in the Microwave and Millimeter Wave frequency range (industry and academia) Addresses modeling/design/applications both from the circuit as from the system perspective Covers the latest innovations in the respective fields Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate This book serves as an excellent reference for engineers, researchers, research project managers and engineers working in R&D, professors, and post-graduates studying related courses. It will also be of interest to professionals working in product development and PhD students.
A triennial summation of the state of the art in radio science This book is the fourth in the modern series of triennial reviews prepared by the International Union of Radio Science to further communication and understanding of the status and future of radio science, both for those working in the field, and for those who want to know what is of current importance in this area. The International Union of Radio Science, URSI (Union Radio-Scientifique Internationale), has divided the subject of "Radio Science" according to the ten topics of the Scientific Commissions that make up URSI. This volume consists of thirty-eight original, peer-reviewed papers. Each paper provides a critical, in-depth review of–and, in many cases, tutorial on–advances and research that have been of significant importance within the area of interest of the Commissions during the past three to four years. Among the topics covered are: Electromagnetic metrology Fields and waves Signals and systems Electronics and photonics Electromagnetic noise and interference Wave propagation and remote sensing Ionospheric radio and propagation Waves in plasmas Radio astronomy Electromagnetics in biology and medicine With an included CD-ROM of the full book text, allowing the user to do full-text searching of all the papers, the Review of Radio Science: 1999—2002 is a resource of vital importance to anyone working in, or with an interest in, radio science.
Discover the concepts, architectures, components, tools, and techniques needed to design millimeter-wave circuits for current and emerging wireless system applications. Focusing on applications in 5G, connectivity, radar, and more, leading experts in radio frequency integrated circuit (RFIC) design provide a comprehensive treatment of cutting-edge physical-layer technologies for radio frequency (RF) transceivers - specifically RF, analog, mixed-signal, and digital circuits and architectures. The full design chain is covered, from system design requirements through to building blocks, transceivers, and process technology. Gain insight into the key novelties of 5G through authoritative chapters on massive MIMO and phased arrays, and learn about the very latest technology developments, such as FinFET logic process technology for RF and millimeter-wave applications. This is an essential reading and an excellent reference for high-frequency circuit designers in both academia and industry.
Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications provides a wide spectrum of current trends in the design of microwave and millimeter circuits and systems. In addition, the book identifies the state-of-the art challenges in microwave and millimeter wave circuits systems design such as behavioral modeling of circuit components, software radio and digitally enhanced front-ends, new and promising technologies such as substrate-integrated-waveguide (SIW) and wearable electronic systems, and emerging applications such as tracking of moving targets using ultra-wideband radar, and new generation satellite navigation systems. Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate. Key Features: Discusses modeling and design strategies for new appealing applications in the domain of microwave and millimeter wave circuits and systems Written by experts active in the Microwave and Millimeter Wave frequency range (industry and academia) Addresses modeling/design/applications both from the circuit as from the system perspective Covers the latest innovations in the respective fields Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate This book serves as an excellent reference for engineers, researchers, research project managers and engineers working in R&D, professors, and post-graduates studying related courses. It will also be of interest to professionals working in product development and PhD students.
Includes designed miniaturized monopole antennas for laptop computers with dual/triple band operations, performance enhancement, wider bandwidth, and increased data rate Explores the design of equivalent circuit diagrams of the proposed antenna. Presents integration of designed antennas into laptop for the validation of desired outcome Identifies and discusses technical challenges and new results related to the design of 5G/WLAN antennas Contains graphical illustration, design steps, detail analysis of each step along with proper justification
This peer-reviewed book explores the technologies driving broadband internet connectivity in the fourth industrial revolution (Industry 4.0). It particularly focuses on potential solutions to introduce these technologies in emerging markets and rural areas, regions that typically form part of the digital divide and often have under-developed telecommunications infrastructures, a lack of skilled workers, and geographical restrictions that limit broadband connectivity. Research shows that ubiquitous internet access boosts socio-economic growth through innovations in science and technology, with the common goal of bringing positive change to the lives of individuals. Fifth-generation (5G) networks based on millimeter-wave (mm-wave) frequency information transfer have the potential to provide future-proof, affordable and sustainable broadband connectivity in areas where previous-generation mobile networks were unable to do so. This book discusses the principles of various technologies that enable electronic circuits to operate at mm-wave frequencies. It examines the importance of identifying, describing, and analyzing technology from a purely technological standpoint, but also acknowledges and investigates the challenges and limitations of introducing such technologies in emerging markets. Presenting recent research, the book spearheads participation in Industry 4.0 in these areas.
This book compiles and presents the research results from the past five years in mm-wave Silicon circuits. This area has received a great deal of interest from the research community including several university and research groups. The book covers device modeling, circuit building blocks, phased array systems, and antennas and packaging. It focuses on the techniques that uniquely take advantage of the scale and integration offered by silicon based technologies.
Radio Frequency Micromachined Switches, Switching Networks, and Phase Shifters discusses radio frequency microelectromechanical systems (RF MEMS)-based control components and will be useful for researchers and R&D engineers. It offers an in-depth study, performance analysis, and extensive characterization on micromachined switches and phase shifters. The reader will learn about basic design methodology and techniques to carry out extensive measurements on MEMS switches and phase shifters which include electrical, mechanical, power handling, linearity, temperature stability, reliability, and radio frequency performance. Practical examples included in the book will help readers to build high performance systems/subsystems using micromachined circuits. Key Features Provides simple design methodology of MEMS switches and switching networks including SPST to SP16T switches Gives an in-depth performance study of micromachined phase shifters. Detailed study on reliability and power handling capability of RF MEMS switches and phase shifters presented Proposes reconfigurable micromachined phase shifters Verifies a variety of MEMS switches and phase shifters experimentally
This book presents in-depth information on a variety of the latest developments in modern printed-circuit antennas written by several prominent authors in the field. This book consists of nine chapters covering a wide range of recent research topics. The topics covered include low-profile metamaterial-based adaptive beamforming techniques, high performance meta-surface antennas, fractal antennas, reconfigurable antennas for 5G systems operating at 60 GHz, radiation pattern synthesis of planar arrays using parasitic patches fed by a small number of active elements, decoupled and de-scattered monopole MIMO antenna arrays with orthogonal radiation patterns, ultra-wide band antennas with defected ground plane and microstrip line fed for Wi-Fi/Wi-Max/DCS/5G/satellite communications, and design, fabrication, and characterization of wearable textile antennas with high body-antenna isolation.