Recent Trends in Lorentzian Geometry

Recent Trends in Lorentzian Geometry

Author: Miguel Sánchez

Publisher: Springer Science & Business Media

Published: 2012-11-06

Total Pages: 357

ISBN-13: 1461448972

DOWNLOAD EBOOK

Traditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques. Recent progress has attracted a renewed interest in this theory for many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed. Samples of these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included. ​ This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field.


Lorentzian Geometry and Related Topics

Lorentzian Geometry and Related Topics

Author: María A. Cañadas-Pinedo

Publisher: Springer

Published: 2018-03-06

Total Pages: 278

ISBN-13: 3319662902

DOWNLOAD EBOOK

This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Málaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathematics and physics. This book is addressed to differential geometers, mathematical physicists and relativists, and graduate students interested in the field.


New Trends in Geometry

New Trends in Geometry

Author: Luciano Boi

Publisher: World Scientific

Published: 2011

Total Pages: 329

ISBN-13: 1848166435

DOWNLOAD EBOOK

This volume focuses on the interactions between mathematics, physics, biology and neuroscience by exploring new geometrical and topological modelling in these fields. Among the highlights are the central roles played by multilevel and scale-change approaches in these disciplines. The integration of mathematics with physics, as well as molecular and cell biology and the neurosciences, will constitute the new frontier of 21st century science, where breakthroughs are more likely to span across traditional disciplines.


New Trends in Analysis and Geometry

New Trends in Analysis and Geometry

Author: Mohamed A. Khamsi

Publisher: Cambridge Scholars Publishing

Published: 2020-01-24

Total Pages: 401

ISBN-13: 1527546128

DOWNLOAD EBOOK

This unique mathematical volume brings together geometers, analysts, differential equations specialists and graph-theorists to provide a glimpse on recent mathematical trends whose commonalities have hitherto remained, for the most part, unnoticed. The applied mathematician will be pleasantly surprised with the interpretation of a voting system in terms of the fixed points of a mapping given in the book, as much as the classical analyst will be enthusiastic to find detailed discussions on the generalization of the notion of metric space, in which the metric takes values on an abstract monoid. Classical themes on fixed point theory are adapted to the diverse setting of graph theory, thus uncovering a set of tools whose power and versatility will be appreciated by mathematicians working on either area. The volume also includes recent results on variable exponent spaces which reveal much-needed connections with partial differential equations, while the incipient field of variational inequalities on manifolds, also explored here, will be of interest to researchers from a variety of fields.


Applications of Affine and Weyl Geometry

Applications of Affine and Weyl Geometry

Author: Eduardo García-Río

Publisher: Morgan & Claypool Publishers

Published: 2013-05-01

Total Pages: 170

ISBN-13: 1608457605

DOWNLOAD EBOOK

Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannian extensions, and Kähler--Weyl geometry from this viewpoint. This book is intended to be accessible to mathematicians who are not expert in the subject and to students with a basic grounding in differential geometry. Consequently, the first chapter contains a comprehensive introduction to the basic results and definitions we shall need---proofs are included of many of these results to make it as self-contained as possible. Para-complex geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying various results. It is a feature of this book that, rather than as regarding para-complex geometry as an adjunct to complex geometry, instead, we shall often introduce the para-complex concepts first and only later pass to the complex setting. The second and third chapters are devoted to the study of various kinds of Riemannian extensions that associate to an affine structure on a manifold a corresponding metric of neutral signature on its cotangent bundle. These play a role in various questions involving the spectral geometry of the curvature operator and homogeneous connections on surfaces. The fourth chapter deals with Kähler--Weyl geometry, which lies, in a certain sense, midway between affine geometry and Kähler geometry. Another feature of the book is that we have tried wherever possible to find the original references in the subject for possible historical interest. Thus, we have cited the seminal papers of Levi-Civita, Ricci, Schouten, and Weyl, to name but a few exemplars. We have also given different proofs of various results than those that are given in the literature, to take advantage of the unified treatment of the area given herein.


Recent Trends in Combinatorics

Recent Trends in Combinatorics

Author: Andrew Beveridge

Publisher: Springer

Published: 2016-04-12

Total Pages: 775

ISBN-13: 3319242989

DOWNLOAD EBOOK

This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute for Mathematics and its Applications during Fall 2014, when combinatorics was the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The three-part structure of the volume reflects the three workshops held during Fall 2014. In the first part, topics on extremal and probabilistic combinatorics are presented; part two focuses on additive and analytic combinatorics; and part three presents topics in geometric and enumerative combinatorics. This book will be of use to those who research combinatorics directly or apply combinatorial methods to other fields.


New Trends in Geometric Analysis

New Trends in Geometric Analysis

Author: Antonio Alarcón

Publisher: Springer Nature

Published: 2023-11-25

Total Pages: 398

ISBN-13: 3031399161

DOWNLOAD EBOOK

The aim of this book is to provide an overview of some of the progress made by the Spanish Network of Geometric Analysis (REAG, by its Spanish acronym) since its born in 2007. REAG was created with the objective of enabling the interchange of ideas and the knowledge transfer between several Spanish groups having Geometric Analysis as a common research line. This includes nine groups at Universidad Autónoma de Barcelona, Universidad Autónoma de Madrid, Universidad de Granada, Universidad Jaume I de Castellón, Universidad de Murcia, Universidad de Santiago de Compostela and Universidad de Valencia. The success of REAG has been substantiated with regular meetings and the publication of research papers obtained in collaboration between the members of different nodes. On the occasion of the 15th anniversary of REAG this book aims to collect some old and new contributions of this network to Geometric Analysis. The book consists of thirteen independent chapters, all of them authored by current members of REAG. The topics under study cover geometric flows, constant mean curvature surfaces in Riemannian and sub-Riemannian spaces, integral geometry, potential theory and Riemannian geometry, among others. Some of these chapters have been written in collaboration between members of different nodes of the network, and show the fruitfulness of the common research atmosphere provided by REAG. The rest of the chapters survey a research line or present recent progresses within a group of those forming REAG. Surveying several research lines and offering new directions in the field, the volume is addressed to researchers (including postdocs and PhD students) in Geometric Analysis in the large.


Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Author: Hemen Dutta

Publisher: Springer Nature

Published: 2019-08-23

Total Pages: 912

ISBN-13: 3030152421

DOWNLOAD EBOOK

This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers’ understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book’s main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.


Current Trends in Analysis, its Applications and Computation

Current Trends in Analysis, its Applications and Computation

Author: Paula Cerejeiras

Publisher: Springer Nature

Published: 2022-10-03

Total Pages: 663

ISBN-13: 3030875024

DOWNLOAD EBOOK

This volume contains the contributions of the participants of the 12th ISAAC congress which was held at the University of Aveiro, Portugal, from July 29 to August 3, 2019. These contributions originate from the following sessions: Applications of dynamical systems theory in biology, Complex Analysis and Partial Differential Equations, Complex Geometry, Complex Variables and Potential Theory, Constructive Methods in the Theory of Composite and Porous Media, Function Spaces and Applications, Generalized Functions and Applications, Geometric & Regularity Properties of Solutions to Elliptic and Parabolic PDEs, Geometries Defined by Differential Forms, Partial Differential Equations on Curved Spacetimes, Partial Differential Equations with Nonstandard Growth, Quaternionic and Clifford Analysis, Recent Progress in Evolution Equations, Wavelet theory and its Related Topics.