This volume brings readers up to date on different aspects of operator theory and its applications, including mathematical physics, hydrodynamics, magnetohydrodynamics, quantum mechanics, astrophysics as well as the theory of networks and systems. Of practical use to a wide readership in pure and applied mathematics, physics and engineering sciences.
This volume contains twenty-one solicited articles by speakers at the IWOTA 2009 workshop, ranging from expository surveys to original research papers, each carefully refereed. The contributions reflect recent developments in operator theory and its applications. Consistent with the topics of recent IWOTA meetings, IWOTA 2009 was designed as a comprehensive, inclusive conference covering all aspects of theoretical and applied operator theory, ranging from classical analysis, differential and integral equations, complex and harmonic analysis to mathematical physics, mathematical systems and control theory, signal processing and numerical analysis. The conference brought together international experts for a week-long stay at Hotel Real de Minas, in an atmosphere conducive to fruitful professional interactions. These Proceedings reflect the high quality of the papers presented at the conference.
This edited volume aims at giving an overview of recent advances in the theory and applications of Partial Differential Equations and energy functionals related to the fractional Laplacian operator as well as to more general integro-differential operators with singular kernel of fractional differentiability. After being investigated firstly in Potential Theory and Harmonic Analysis, fractional operators defined via singular integral are nowadays riveting great attention in different research fields related to Partial Differential Equations with nonlocal terms, since they naturally arise in many different contexts, as for instance, dislocations in crystals, nonlocal minimal surfaces, the obstacle problem, the fractional Yamabe problem, and many others. Much progress has been made during the last years, and this edited volume presents a valuable update to a wide community interested in these topics. List of contributors Claudia Bucur, Zhen-Qing Chen, Francesca Da Lio, Donatella Danielli, Serena Dipierro, Rupert L. Frank, Maria del Mar Gonzalez, Moritz Kassmann, Tuomo Kuusi, Giuseppe Mingione, Giovanni Molica Bisci, Stefania Patrizi, Xavier Ros-Oton, Sandro Salsa, Yannick Sire, Enrico Valdinoci, Xicheng Zhang.
This volume contains the proceedings of the AMS Special Session on Recent Progress in Function Theory and Operator Theory, held virtually on April 6, 2022. Function theory is a classical subject that examines the properties of individual elements in a function space, while operator theory usually deals with concrete operators acting on such spaces or other structured collections of functions. These topics occupy a central position in analysis, with important connections to partial differential equations, spectral theory, approximation theory, and several complex variables. With the aid of certain canonical representations or “models”, the study of general operators can often be reduced to that of the operator of multiplication by one or several independent variables, acting on spaces of analytic functions or compressions of this operator to co-invariant subspaces. In this way, a detailed understanding of operators becomes connected with natural questions concerning analytic functions, such as zero sets, constructions of functions constrained by norms or interpolation, multiplicative structures granted by factorizations in spaces of analytic functions, and so forth. In many cases, non-obvious problems initially motivated by operator-theoretic considerations turn out to be interesting on their own, leading to unexpected challenges in function theory. The research papers in this volume deal with the interplay between function theory and operator theory and the way in which they influence each other.
These 35 refereed articles report on recent and original results in various areas of operator theory and connected fields, many of them strongly related to contributions of Sz.-Nagy. The scientific part of the book is preceeded by fifty pages of biographical material, including several photos.
The articles in this book are based on talks at a conference devoted to interrelations between function theory and the theory of operators. The main theme of the book is the role of Alexandrov-Clark measures. Two of the articles provide the introduction to the theory of Alexandrov-Clark measures and to its applications in the spectral theory of linear operators. The remaining articles deal with recent results in specific directions related to the theme of the book.
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.
This book offers peer-reviewed articles from the 19th International Conference on Operator Theory, Summer 2002. It contains recent developments in a broad range of topics from operator theory, operator algebras and their applications, particularly to differential analysis, complex functions, ergodic theory, mathematical physics, matrix analysis, and systems theory. The book covers a large variety of topics including single operator theory, C*-algebras, diffrential operators, integral transforms, stochastic processes and operators, and more.
A collection of 25 papers dedicated to Israel Gohberg, an outstanding leader in operator theory. Also containing a review of his contributions to mathematics and a complete list of his publications. The book is of interest to a wide audience of pure and applied mathematicians.
This book will contain lectures given by four eminent speakers at the Recent Advances in Operator Theory and Operator Algebras conference held at the Indian Statistical Institute, Bangalore, India in 2014. The main aim of this book is to bring together various results in one place with cogent introduction and references for further study.