This book contains the proceedings of the 10th Hellenic Relativity Conference, held in Greece in 2002. It includes several plenary lectures given by leading experts on brane-world cosmology, radiative space-times, detection of gravitational waves, gamma-ray bursts and quantum gravity. There are a large number of contributed papers, organized into three broad subject areas: cosmology and brane gravity, mathematical relativity and astrophysical relativity, and the detection of gravitational waves.
The Marcel Grossmann Meetings are three-yearly forums that meet to discuss recent advances in gravitation, general relativity and relativistic field theories, emphasizing their mathematical foundations, physical predictions and experimental tests. These meetings aim to facilitate the exchange of ideas among scientists, to deepen our understanding of space-time structures, and to review the status of ongoing experiments and observations testing Einstein's theory of gravitation either from ground or space-based experiments. Since the first meeting in 1975 in Trieste, Italy, which was established by Remo Ruffini and Abdus Salam, the range of topics presented at these meetings has gradually widened to accommodate issues of major scientific interest, and attendance has grown to attract more than 900 participants from over 80 countries.This proceedings volume of the eleventh meeting in the series, held in Berlin in 2006, highlights and records the developments and applications of Einstein's theory in diverse areas ranging from fundamental field theories to particle physics, astrophysics and cosmology, made possible by unprecedented technological developments in experimental and observational techniques from space, ground and underground observatories. It provides a broad sampling of the current work in the field, especially relativistic astrophysics, including many reviews by leading figures in the research community.
Proceedings of the 10th Hellenic Relativity Conference on Recent Developments in Gravity, held in Kalithea, Chalkidiki, Greece from May 30 to June 2, 2002.
The Marcel Grossmann meetings were conceived to promote theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. They review recent developments in gravitation and general relativity, with major emphasis on mathematical foundations and physical predictions. Their main objective is to bring together scientists from diverse backgrounds and their range of topics is broad, from more abstract classical theory and quantum gravity and strings to more concrete relativistic astrophysics observations and modeling. This Tenth Marcel Grossmann Meeting was organized by an international committee composed of D Blair, Y Choquet-Bruhat, D Christodoulou, T Damour, J Ehlers, F Everitt, Fang Li Zhi, S Hawking, Y Ne'eman, R Ruffini (chair), H Sato, R Sunyaev, and S Weinberg and backed by an international coordinating committee of about 135 members from scientific institutions representing 54 countries. The scientific program included 29 morning plenary talks during 6 days, and 57 parallel sessions over five afternoons, during which roughly 500 papers were presented. These three volumes of the proceedings of MG10 give a broad view of all aspects of gravitation, from mathematical issues to recent observations and experiments. Sample Chapter(s) Part A: Plenary and Review Talks The Initial Value Problem Using Metric and Extrinsic Curvature (566k) Part B: Plenary and Review Talks The Largest Optical Telescopes: Today VLT; Tomorrow Owl. (951k) Part C: Parallel Sessions Numerical Simulation of General Relativistic Stellar Collapse (1,337k) Contents: The Initial Value Problem Using Metric and Extrinsic Curvature "(J W York Jr)"Mathematics, Physics and Ping-Pong "(Y Ne'eman)"Thermal Decay of the Cosmological Constant into Black Holes "(C Teitelboim)"Structure Formation in the Universe by Exact Methods "(A Krasinski & C Hellaby)"Overview of D-brane Worlds in String Theory "(A M Uranga)"Tachyons, D-brane Decay, and Closed Strings "(B Zwiebach)"String Compactifications -- Old and New "(A Dabholkar)"Covariant Quantization of the Superstring "(N Berkovits)"Limiting Braneworlds with the Binary Pulsar "(R Durrer & P Kocian)"Cosmological Instabilities from Vector Perturbations in Braneworlds "(R Durrer et al.)"Principles of Affine Quantum Gravity "(J R Klauder)"Developments in GRworkbench "(A Moylan et al.)"Constants of Nature? "(H B Sandvik)"Gravitational Wave Detection: A Survey of the Worldwide Program "(J Degallaix & D Blair)"Evidence for Coincident Events Between the Gravitational Wave Detectors EXPLORER and NAUTILUS "(G Pizzella)"The LIGO Gravitational Wave Observatories: Recent Results and Future Plans "(G M Harry et al.)"General Relativity in Space and Sensitive Tests of the Equivalence Principle "(C Lammerzahl)"Multiwavelength Afterglows of Gamma-Ray Bursts "(E Pian)"Black Hole Physics and Astrophysics: The GRB-Supernova Connection and URCA-1 -- URCA-2 "(R Ruffini et al.)"Black Holes from the Dark Ages: Exploring the Reionization Era and Early Structure Formation with Quasars and Gamma-Ray Bursts "(S G Djorgovski)"The Diagnostic Power of X-Ray Emission Lines in GRBs "(M Bottcher)"
The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.
From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.
This book presents selected contributions to the 16th International Conference on Global Research and Education Inter-Academia 2017 hosted by Alexandru Ioan Cuza University of Iași, Romania from 25 to 28 September 2017. It is the third volume in the series, following the editions from 2015 and 2016. Fundamental and applied research in natural sciences have led to crucial developments in the ongoing 4th global industrial revolution, in the course of which information technology has become deeply embedded in industrial management, research and innovation – and just as deeply in education and everyday life. Materials science and nanotechnology, plasma and solid state physics, photonics, electrical and electronic engineering, robotics and metrology, signal processing, e-learning, intelligent and soft computing have long since been central research priorities for the Inter-Academia Community (I-AC) – a body comprising 14 universities and research institutes from Japan and Central/East-European countries that agreed, in 2002, to coordinate their research and education programs so as to better address today’s challenges. The book is intended for use in academic, government, and industrial R&D departments as a reference tool in research and technology education. The 42 peer-reviewed papers were written by more than 119 leading scientists from 14 countries, most of them affiliated to the I-AC.