The papers from these proceedings address experimental and analytical methods for the characterization and analysis of modern composite and adhesive systems. They have been produced to provide understanding that can be used to design safe, reliable engineering components.
Composite material systems are the basis for much of the natural world around us and are rapidly becoming the basis for many modern engineering components. A controlling feature for the general use of such systems is their damage tolerance, durability and reliability. The present book is a comprehensive cross section of the state of the art in the field of the durability of polymer-based, composite, and adhesive systems. As such, it is of special value to researchers concerned with the frontier of the field, to students concerned with the substance of the subject, and to the applied community concerned with the finding methodologies that make it possible to design safe and durable engineering components using material systems.
This book contains 31 papers presented at the symposium on "Recent Advances in Composite Materials" which was organized in honor of Professor Stephanos A. Paipetis. The symposium took place at Democritus University of Thrace, in Xanthi, Greece on June 12-14, 2003. The book is a tribute to Stephanos A. Paipetis, a pioneer of composite materials, in recognition of his continuous, original diversified and outstanding contributions for half a century. The book consists of invited papers written by leading experts in the field. It contains original contributions concerning the latest developments in composite materials. It covers a wide range of subjects including experimental characterization, analytical modeling and applications of composite materials. The papers are arranged in the following six sections: General concepts, stress and failure analysis, mechanical properties, metal matrix composites, structural analysis and applications of composite materials. The first section on general concepts contains seven papers dealing with composites through the pursuit of the consilience among them, computation and mechatronic automation of multiphysics research, a theory of anisotropic scattering, wave propagation, multi-material composite wedges, a three-dimensional finite element analysis around broken fibers and an in situ assessment of the micromechanics of large scale bridging in ceramic composites.
The papers from these proceedings address experimental and analytical methods for the characterization and analysis of modern composite and adhesive systems. They have been produced to provide understanding that can be used to design safe, reliable engineering components.
This proceedings covers the general problem related to the damage initiation and development, the failure criteria and the specific aspects related to fatigue, creep behaviour, moisture diffusion and the problem of the joining systems.
Ageing of composites is a highly topical subject given the increasing use of composites in structural applications in many industries. Ageing of composites addresses many of the uncertainties about the long-term performance of composites and how they age under conditions encountered in service.The first part of the book reviews processes and modelling of composite ageing including physical and chemical ageing of polymeric composites, ageing of glass-ceramic matrix composites, chemical ageing mechanisms, stress corrosion cracking, thermo-oxidative ageing, spectroscopy of ageing composites, modelling physical and accelerated ageing and ageing of silicon carbide composites. Part two examines ageing of composites in transport applications including aircraft, vehicles and ships. Part three reviews ageing of composites in non-transport applications such as implants in medical devices, oil and gas refining, construction, chemical processing and underwater applications.With its distinguished editor and international team of contributors, Ageing of composites is a valuable reference guide for composite manufacturers and developers. It also serves as a source of information for material scientists, designers and engineers in industries that use composites, including transport, chemical processing and medical engineering. - Addresses many of the uncertainties about the long-term performance of composites and how they age under conditions encountered in service - Reviews processes and modelling of composite ageing including chemical ageing mechanisms and stress corrosion cracking - Discusses ageing of composites in both transport and non-transport applications ranging from aircraft to implants in medical devices
Durability of Composite Systems meets the challenge of defining these precepts and requirements, from first principles, to applications in a diverse selection of technical fields selected to form a corpus of concepts and methodologies that define the field of durability in composite material systems as a modern discipline. That discipline includes not only the classical rigor of mechanics, physics and chemistry, but also the critical elements of thermodynamics, data analytics, and statistical uncertainty quantification as well as other requirements of the modern subject. This book provides a comprehensive summary of the field, suited to both reference and instructional use. It will be essential reading for academic and industrial researchers, materials scientists and engineers and all those working in the design, analysis and manufacture of composite material systems. - Makes essential direct and detailed connections to modern concepts and methodologies, such as machine learning, systems controls, sustainable and resilient systems, and additive manufacturing - Provides a careful balance between theory and practice so that presentations of details of methodology and philosophy are always driven by a context of applications and examples - Condenses selected information regarding the durability of composite materials in a wide spectrum of applications in the automotive, wind energy, civil engineering, medical devices, electrical systems, aerospace and nuclear fields
This book contains 71 papers presented at the symposium on “Recent Advances in Experimental Mechanics” which was organized in honor of Professor Isaac M. Daniel. The symposium took place at Virginia Polytechnic Institute and State University on th June 23-28, 2002, in conjunction with the 14 US National Congress of Applied Mechanics. The book is a tribute to Isaac Daniel, a pioneer of experimental mechanics and composite materials, in recognition of his continuous, original, diversified and outstanding contributions for half a century. The book consists of invited papers written by leading experts in the field. It contains original contributions concerning the latest developments in experimental mechanics. It covers a wide range of subjects, including optical methods of stress analysis (photoelasticity, moiré, etc.), composite materials, sandwich construction, fracture mechanics, fatigue and damage, nondestructive evaluation, dynamic problems, fiber optic sensors, speckle metrology, digital image processing, nanotechnology, neutron diffraction and synchrotron radiation methods. The papers are arranged in the following nine sections: Mechanical characterization of material behavior, composite materials, fracture and fatigue, optical methods, n- destructive evaluation, neutron diffraction and synchrotron radiation methods, hybrid methods, composite structures, and structural testing and analysis.