Recent Advances in Homotopy Theory
Author: George William Whitehead
Publisher: Amer Mathematical Society
Published: 2007-03-29
Total Pages: 82
ISBN-13: 9780821841587
DOWNLOAD EBOOKRead and Download eBook Full
Author: George William Whitehead
Publisher: Amer Mathematical Society
Published: 2007-03-29
Total Pages: 82
ISBN-13: 9780821841587
DOWNLOAD EBOOKAuthor: Donald M. Davis
Publisher: American Mathematical Soc.
Published: 2002
Total Pages: 424
ISBN-13: 0821828010
DOWNLOAD EBOOKThis volume presents the proceedings from the month-long program held at Johns Hopkins University (Baltimore, MD) on homotopy theory, sponsored by the Japan-U.S. Mathematics Institute (JAMI). The book begins with historical accounts on the work of Professors Peter Landweber and Stewart Priddy. Central among the other topics are the following: 1. classical and nonclassical theory of $H$-spaces, compact groups, and finite groups, 2. classical and chromatic homotopy theory andlocalization, 3. classical and topological Hochschild cohomology, 4. elliptic cohomology and its relation to Moonshine and topological modular forms, and 5. motivic cohomology and Chow rings. This volume surveys the current state of research in these areas and offers an overview of futuredirections.
Author: Izzet Coskun
Publisher: American Mathematical Soc.
Published: 2017-07-12
Total Pages: 386
ISBN-13: 1470435578
DOWNLOAD EBOOKThe algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.
Author: Phillip Griffiths
Publisher: Springer Science & Business Media
Published: 2013-10-02
Total Pages: 228
ISBN-13: 1461484685
DOWNLOAD EBOOKThis completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham’s theorem on simplicial complexes. In addition, Sullivan’s results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
Author: M.M. Cohen
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 124
ISBN-13: 1468493728
DOWNLOAD EBOOKThis book grew out of courses which I taught at Cornell University and the University of Warwick during 1969 and 1970. I wrote it because of a strong belief that there should be readily available a semi-historical and geo metrically motivated exposition of J. H. C. Whitehead's beautiful theory of simple-homotopy types; that the best way to understand this theory is to know how and why it was built. This belief is buttressed by the fact that the major uses of, and advances in, the theory in recent times-for example, the s-cobordism theorem (discussed in §25), the use of the theory in surgery, its extension to non-compact complexes (discussed at the end of §6) and the proof of topological invariance (given in the Appendix)-have come from just such an understanding. A second reason for writing the book is pedagogical. This is an excellent subject for a topology student to "grow up" on. The interplay between geometry and algebra in topology, each enriching the other, is beautifully illustrated in simple-homotopy theory. The subject is accessible (as in the courses mentioned at the outset) to students who have had a good one semester course in algebraic topology. I have tried to write proofs which meet the needs of such students. (When a proof was omitted and left as an exercise, it was done with the welfare of the student in mind. He should do such exercises zealously.
Author: Matt Kerr
Publisher: Cambridge University Press
Published: 2016-02-04
Total Pages: 533
ISBN-13: 1316531392
DOWNLOAD EBOOKIn its simplest form, Hodge theory is the study of periods – integrals of algebraic differential forms which arise in the study of complex geometry and moduli, number theory and physics. Organized around the basic concepts of variations of Hodge structure and period maps, this volume draws together new developments in deformation theory, mirror symmetry, Galois representations, iterated integrals, algebraic cycles and the Hodge conjecture. Its mixture of high-quality expository and research articles make it a useful resource for graduate students and seasoned researchers alike.
Author: José-Francisco Rodrigues
Publisher: American Mathematical Soc.
Published: 2004
Total Pages: 122
ISBN-13: 0821832786
DOWNLOAD EBOOKContains both survey and research articles on methods of optimal mass transport and applications in physics.
Author: Jean-Pierre Magnot
Publisher: American Mathematical Society
Published: 2024-02-02
Total Pages: 272
ISBN-13: 1470472546
DOWNLOAD EBOOKThis volume contains the proceedings of the AMS-EMS-SMF Special Session on Recent Advances in Diffeologies and Their Applications, held from July 18–20, 2022, at the Université de Grenoble-Alpes, Grenoble, France. The articles present some developments of the theory of diffeologies applied in a broad range of topics, ranging from algebraic topology and higher homotopy theory to integrable systems and optimization in PDE. The geometric framework proposed by diffeologies is known to be one of the most general approaches to problems arising in several areas of mathematics. It can adapt to many contexts without major technical difficulties and produce examples inaccessible by other means, in particular when studying singularities or geometry in infinite dimension. Thanks to this adaptability, diffeologies appear to have become an interesting and useful language for a growing number of mathematicians working in many different fields. Some articles in the volume also illustrate some recent developments of the theory, which makes it even more deep and useful.
Author: Luchezar L. Avramov
Publisher: American Mathematical Soc.
Published: 2007
Total Pages: 352
ISBN-13: 0821838148
DOWNLOAD EBOOKThis book is based on talks presented at the Summer School on Interactions between Homotopy theory and Algebra held at the University of Chicago in the summer of 2004. The goal of this book is to create a resource for background and for current directions of research related to deep connections between homotopy theory and algebra, including algebraic geometry, commutative algebra, and representation theory. The articles in this book are aimed at the audience of beginning researchers with varied mathematical backgrounds and have been written with both the quality of exposition and the accessibility to novices in mind.
Author: Krishan L. Duggal
Publisher: American Mathematical Soc.
Published: 2003
Total Pages: 214
ISBN-13: 0821833790
DOWNLOAD EBOOKThis volume covers material presented by invited speakers at the AMS special session on Riemannian and Lorentzian geometries held at the annual Joint Mathematics Meetings in Baltimore. Topics covered include classification of curvature-related operators, curvature-homogeneous Einstein 4-manifolds, linear stability/instability singularity and hyperbolic operators of spacetimes, spectral geometry of holomorphic manifolds, cut loci of nilpotent Lie groups, conformal geometry of almost Hermitian manifolds, and also submanifolds of complex and contact spaces. This volume can serve as a good reference source and provide indications for further research. It is suitable for graduate students and research mathematicians interested in differential geometry.