Papers from the Discussion Conference on Recent Advances in General Relativity, held at the U. of Pittsburgh, May 1990, survey the interacting fields of classical general relativity, astrophysics, and quantum gravity. Some of the remarks made following the invited papers are also included. The conference also included three workshops on classical g
These lecture notes are intended for starting PhD students in theoretical physics who have a working knowledge of General Relativity. The four topics covered are: Surface charges as conserved quantities in theories of gravity; Classical and holographic features of three-dimensional Einstein gravity; Asymptotically flat spacetimes in four dimensions: BMS group and memory effects; The Kerr black hole: properties at extremality and quasi-normal mode ringing. Each topic starts with historical foundations and points to a few modern research directions.
Following the approach of Lev Landau and Evgenii Lifshitz, this book introduces the theory of special and general relativity with the Lagrangian formalism and the principle of least action. This method allows the complete theory to be constructed starting from a small number of assumptions, and is the most natural approach in modern theoretical physics. The book begins by reviewing Newtonian mechanics and Newtonian gravity with the Lagrangian formalism and the principle of least action, and then moves to special and general relativity. Most calculations are presented step by step, as is done on the board in class. The book covers recent advances in gravitational wave astronomy and provides a general overview of current lines of research in gravity. It also includes numerous examples and problems in each chapter.
This book addresses the latest advances in general relativity research, including the classical world and spinor formalisms; keys to understanding gravity; the continuum mechanics of space-time; new evidences on matter without energy-stress tensor; a new approach to study gravitational stability of the solutions to the Einstein equations; Mond theory; polynumbers field theory; the algebra, geometry and physics of hyperland; S2-like star orbits near the galactic center in RN and Yukawa gravity; geodesic analysis in multidimensional gravity models; and the collapsing of general relativity and the singularity in the event of the Big Bang and black holes.
Einstein's general theory of relativity is widely considered to be one of the most elegant and successful scientific theories ever developed, and it is increasingly being taught in a simplified form at advanced undergraduate level within both physics and mathematics departments. Due to the increasing interest in gravitational physics, in both the academic and the public sphere, driven largely by widely-publicised developments such as the recent observations of gravitational waves, general relativity is also one of the most popular scientific topics pursued through self-study. Modern General Relativity introduces the reader to the general theory of relativity using an example-based approach, before describing some of its most important applications in cosmology and astrophysics, such as gamma-ray bursts, neutron stars, black holes, and gravitational waves. With hundreds of worked examples, explanatory boxes, and end-of-chapter problems, this textbook provides a solid foundation for understanding one of the towering achievements of twentieth-century physics.
"Wald's book is clearly the first textbook on general relativity with a totally modern point of view; and it succeeds very well where others are only partially successful. The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement "Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today
Aimed at advanced undergraduates with background knowledge of classical mechanics and electricity and magnetism, this textbook presents both the particle dynamics relevant to general relativity, and the field dynamics necessary to understand the theory. Focusing on action extremization, the book develops the structure and predictions of general relativity by analogy with familiar physical systems. Topics ranging from classical field theory to minimal surfaces and relativistic strings are covered in a homogeneous manner. Nearly 150 exercises and numerous examples throughout the textbook enable students to test their understanding of the material covered. A tensor manipulation package to help students overcome the computational challenge associated with general relativity is available on a site hosted by the author. A link to this and to a solutions manual can be found at www.cambridge.org/9780521762458.
• Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field. • Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks. • Fully up-to-date, containing the latest developments and discoveries in the field.
General relativity is a theory proposed by Einstein in 1915 as a unified theory of space, time and gravitation. It is based on and extends Newton's theory of gravitation as well as Newton's equations of motion. It is thus fundamentally rooted in classical mechanics. The theory can be seen as a development of Riemannian geometry, itself an extension of Gauss' intrinsic theory of curved surfaces in Euclidean space. The domain of application of the theory is astronomical systems. One of the mathematical methods analyzed and exploited in the present volume is an extension of Noether's fundamental principle connecting symmetries to conserved quantities. This is involved at a most elementary level in the very definition of the notion of hyperbolicity for an Euler-Lagrange system of partial differential equations. Another method, the study and systematic use of foliations by characteristic (null) hypersurfaces, is in the spirit of Roger Penrose's approach in his incompleteness theorem. The methods have applications beyond general relativity to problems in fluid mechanics and, more generally, to the mechanics and electrodynamics of continuous media. The book is intended for advanced students and researchers seeking an introduction to the methods and applications of general relativity.