This cutting-edge volume presents recent advances in the area of metaheuristic combinatorial optimisation, with a special focus on evolutionary computation methods. Moreover, it addresses local search methods and hybrid approaches.
Memetic algorithms are evolutionary algorithms that apply a local search process to refine solutions to hard problems. Memetic algorithms are the subject of intense scientific research and have been successfully applied to a multitude of real-world problems ranging from the construction of optimal university exam timetables, to the prediction of protein structures and the optimal design of space-craft trajectories. This monograph presents a rich state-of-the-art gallery of works on memetic algorithms. Recent Advances in Memetic Algorithms is the first book that focuses on this technology as the central topical matter. This book gives a coherent, integrated view on both good practice examples and new trends including a concise and self-contained introduction to memetic algorithms. It is a necessary read for postgraduate students and researchers interested in recent advances in search and optimization technologies based on memetic algorithms, but can also be used as complement to undergraduate textbooks on artificial intelligence.
Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.
The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple problems where conventional techniques work well. Clearly there is a need for a volume that both reviews state-of-the-art evolutionary computation techniques, and surveys the most recent developments in their use for solving complex OR/MS problems. This volume on Evolutionary Optimization seeks to fill this need. Evolutionary Optimization is a volume of invited papers written by leading researchers in the field. All papers were peer reviewed by at least two recognized reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.
Evolutionary computation has emerged as a major topic in the scientific community as many of its techniques have successfully been applied to solve problems in a wide variety of fields. Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation provides comprehensive research on emerging theories and its aspects on intelligent computation. Particularly focusing on breaking trends in evolutionary computing, algorithms, and programming, this publication serves to support professionals, government employees, policy and decision makers, as well as students in this scientific field.
This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.
This book constitutes the refereed proceedings of the 13th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2013, held in Vienna, Austria, in April 2013, colocated with the Evo* 2013 events EuroGP, EvoBIO, EvoMUSART, and EvoApplications. The 23 revised full papers presented were carefully reviewed and selected from 50 submissions. The papers present the latest research and discuss current developments and applications in metaheuristics - a paradigm to effectively solve difficult combinatorial optimization problems appearing in various industrial, economic, and scientific domains. Prominent examples of metaheuristics are ant colony optimization, evolutionary algorithms, greedy randomized adaptive search procedures, iterated local search, simulated annealing, tabu search, and variable neighborhood search. Applications include scheduling, timetabling, network design, transportation and distribution, vehicle routing, the travelling salesman problem, packing and cutting, satisfiability, and general mixed integer programming.
In recent years, the issue of linkage in GEAs has garnered greater attention and recognition from researchers. Conventional approaches that rely much on ad hoc tweaking of parameters to control the search by balancing the level of exploitation and exploration are grossly inadequate. As shown in the work reported here, such parameters tweaking based approaches have their limits; they can be easily ”fooled” by cases of triviality or peculiarity of the class of problems that the algorithms are designed to handle. Furthermore, these approaches are usually blind to the interactions between the decision variables, thereby disrupting the partial solutions that are being built up along the way.
This book provides a thorough and up-to-date discussion of arc routing by world-renowned researchers. Organized by problem type, the book offers a rigorous treatment of complexity issues, models, algorithms, and applications. Arc Routing: Problems, Methods, and Applications?opens with a historical perspective of the field and is followed by three sections that cover complexity and the Chinese Postman and the Rural Postman problems; the Capacitated Arc Routing Problem and routing problems with min-max and profit maximization objectives; and important applications, including meter reading, snow removal, and waste collection.?
This book presents selected papers from the MENDEL conference that was held in Brno, Czech Republic in June 2017. Consisting of two parts, the book discusses recent advances in soft computing, including intelligent image processing: Part 1 addresses evolutionary computing, swarm intelligence, metaheuristics, and optimization; Part 2 then focuses on neural networks, machine learning, self-organization, fuzzy systems, and advanced statistics. The MENDEL conference was established in 1995 and it bears the name of the scientist and Augustinian priest Gregor J. Mendel, who discovered the famous Laws of Heredity. The main aim of the conference was to create a regular opportunity for students, academics and researchers to exchange their ideas and novel research methods.