This volume presents a selection of contributions from international environmental scholars and water researchers. The book includes significant topics on earth and environmental sciences such as water resources and water quality, soil quality and sediment contamination, air pollution and climate change, and issues related to clean production. The themes were chosen according to the current global issues covering major aspects of their respective fields. The aim of the book was to discover advances, experiences and innovative ideas on issues related to earth and environmental sciences, to share experiences and research findings, discuss challenges encountered and solutions in order to have opportunities to establish productive new academic and industry research collaborations.
The existence of the human race has created inevitable effects on our surrounding environment. To prevent further harm to the world’s ecosystems, it becomes imperative to assess mankind’s impact on and create sustainability initiatives to maintain the world’s ecosystems. Environmental Sustainability and Climate Change Adaptation Strategies is a pivotal reference source for the latest scholarly material on the scientific, technical, and socio-economic factors related to climate change assessment. Providing a comprehensive overview of perspectives on sustainability protection of environmental resources, this book is ideally designed for policy makers, professionals, government officials, upper-level students, and academics interested in emerging research on climate change.
In the present scenario, green technologies are playing significant role in changing the course of nation’s economic growth towards sustainability and providing an alternative socio-economic model that will enable present and future generations to live in a clean and healthy environment, in harmony with nature. Green technology, which is also known as clean technology, refers to the development and extension of processes, practices, and applications that improve or replace the existing technologies facilitating society to meet their own needs while substantially decreasing the impact of human on the planet, and reducing environmental risks and ecological scarcities. The concepts of Green Technologies, if endorsed and pervaded into the lives of all societies, will facilitate the aim of the Millennium Development Goals of keeping the environment intact and improve it for the civilization to survive. Green Technologies and Environmental Sustainability is focused on the goals of green technologies which are becoming increasingly important for ensuring sustainability. This book provides different perspectives of green technology in sectors like energy, agriculture, waste management and economics and contains recent advancements made towards sustainable development in the field of bioenergy, nanotechnology, green chemistry, bioremediation, degraded land reclamation. This book is written for a large and broad readership, including researchers, scientists, academicians and readers from diverse backgrounds across various fields such as nanotechnology, chemistry, agriculture, environmental science, water engineering, waste management and energy. It could also serve as a reference book for graduates and post-graduate students, faculties, environmentalist and industrial personnel who are working in the area of green technologies.
This revised and updated new edition retains the clear and powerful argument which characterized the original. It gives a valuable analysis of the theory and practice of sustainable development and suggests that at the start of the new millennium, we should think radically about the challenge of sustainability. Fully revised, this latest edition includes further reading, chapter outlines, chapter summaries and new discussion topics, and explores: the roots of sustainable development thinking and its evolution in the last three decades of the twentieth century the dominant ideas within mainstream sustainable development the nature and diversity of alternative ideas about sustainability the problems of environmental degradation and the environmental impacts of development strategies for building sustainability in development from above and below. Offering a synthesis of theoretical ideas on sustainability based on the industrialized economies of the North and the practical, applied ideas in the South which tend to ignore 'First World' theory, this important text gives a clear discussion of theory and extensive practical insights drawn from Africa, Latin America and Asia.
Bioremediation for Environmental Sustainability: Toxicity, Mechanisms of Contaminants Degradation, Detoxification and Challenges introduces pollution and toxicity profiles of various organic and inorganic contaminants, including mechanisms of toxicity, degradation, and detoxification by microbes and plants, and their bioremediation approaches for environmental sustainability. The book also covers many advanced technologies in the field of bioremediation and phytoremediation, including electro-bioremediation, microbial fuel cells, nano-bioremediation, constructed wetlands, phytotechnologies, and many more, which are lacking in other competitive titles existing in the market. The book includes updated information, as well as future directions for research, in the field of bioremediation of industrial wastes. This book is a reference for students, researchers, scientists, and professionals in the fields of microbiology, biotechnology, environmental sciences, eco-toxicology, environmental remediation, and waste management, especially those who aspire to work on the biodegradation and bioremediation of industrial wastes and environmental pollutants for environmental sustainability. Environmental safety and sustainability with rapid industrialization is one of the major challenges worldwide. Industries are the key drivers in the world economy, but these are also the major polluters due to discharge of potentially toxic and hazardous wastes containing various organic and inorganic pollutants, which cause environmental pollution and severe toxic effects in living beings. Introduces pollution and toxicity profiles of environmental contaminants and industrial wastes, including oil refinery wastewater, distillery wastewater, tannery wastewater, textile wastewater, mine tailing wastes, plastic wastes, and more Describes underlying mechanisms of degradation and detoxification of emerging organic and inorganic contaminants with enzymatic roles Focuses on recent advances and challenges in bioremediation and phytoremediation, including microbial enzymes, biosurfactants, microalgae, biofilm, archaea, genetically engineered organisms, and more Describes how microbes and plants can be successfully applied for the remediation of potentially toxic industrial wastes and chemical pollutants to protect the environment and public health
Nanomaterials have been used for years in industries such as consumer products, textile production, and biomedicine, yet the literature outlining their use in environmental causes is limited. The safety, toxicity, transportation, and removal of this technology must be addressed as nanotechnology and nanomaterial use is expected to grow. Applying Nanotechnology for Environmental Sustainability addresses the applications of nanomaterials in the field of environmental conservation and sustainability, and analyses the potential risks associated with their use. It elucidates the scientific concepts and emerging technologies in nanoscience and nanotoxicity by offering a wide range of innovative topics and reviews regarding its use. This publication is essential for environmental engineers, researchers, consultants, students, regulators, and professionals in the field of nanotechnology.
This book is an outcome of the 34th International Conference EnviroInfo 2020, hosted virtually in Nicosia, Cyprus by the Research Centre on Interactive Media, Smart Systems and Emerging Technologies (RISE). It presents a selection of papers that describe innovative scientific approaches and ongoing research in environmental informatics and the emerging field of environmental sustainability, promoted and facilitated by the use of information and communication technologies (ICT). The respective articles cover a broad range of scientific aspects including advances in core environmental informatics-related technologies such as earth observation, environmental modelling, big data and machine learning, robotics, smart agriculture and food solutions, renewable energy-based solutions, optimization of infrastructures, sustainable industrial processes, and citizen science, as well as applications of ICT solutions intended to support societal transformation processes toward the more sustainable management of resource use, transportation and energy supplies. Given its scope, the book is essential reading for scientists, experts and students in these fields of research. Chapter “Developing a Configuration System for a Simulation Game in the Domain of Urban CO2 Emissions Reduction” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Sustainability is based on a simple and long-recognized factual premise: Everything that humans require for their survival and well-being depends, directly or indirectly, on the natural environment. The environment provides the air we breathe, the water we drink, and the food we eat. Recognizing the importance of sustainability to its work, the U.S. Environmental Protection Agency (EPA) has been working to create programs and applications in a variety of areas to better incorporate sustainability into decision-making at the agency. To further strengthen the scientific basis for sustainability as it applies to human health and environmental protection, the EPA asked the National Research Council (NRC) to provide a framework for incorporating sustainability into the EPA's principles and decision-making. This framework, Sustainability and the U.S. EPA, provides recommendations for a sustainability approach that both incorporates and goes beyond an approach based on assessing and managing the risks posed by pollutants that has largely shaped environmental policy since the 1980s. Although risk-based methods have led to many successes and remain important tools, the report concludes that they are not adequate to address many of the complex problems that put current and future generations at risk, such as depletion of natural resources, climate change, and loss of biodiversity. Moreover, sophisticated tools are increasingly available to address cross-cutting, complex, and challenging issues that go beyond risk management. The report recommends that EPA formally adopt as its sustainability paradigm the widely used "three pillars" approach, which means considering the environmental, social, and economic impacts of an action or decision. Health should be expressly included in the "social" pillar. EPA should also articulate its vision for sustainability and develop a set of sustainability principles that would underlie all agency policies and programs.
Emerging Contaminants in the Environment: Challenges and Sustainable Practices covers all aspects of emerging contaminants in the environment, from basic understanding to different types of emerging contaminants and how these threaten organisms, their environmental fate studies, detection methods, and sustainable practices of dealing with contaminants. Emerging contaminant remediation is a pressing need due to the ever-increasing pollution in the environment, and it has gained a lot of scientific and public attention due to its high effectiveness and sustainability. The discussions in the book on the bioremediation of these contaminants are covered from the perspective of proven technologies and practices through case studies and real-world data. One of the main benefits of this book is that it summarizes future challenges and sustainable solutions. It can, therefore, become an effective guide to the elimination (through sustainable practices) of emerging contaminants. At the back of these explorations on sustainable bioremediation of emerging contaminants lies the set of 17 goals articulated by the United Nations in its 2030 Agenda for Sustainable Development, adopted by all its member states. This book provides academics, researchers, students, and practitioners interested in the detection and elimination of emerging contaminants from the environment, with the latest advances by leading experts in emerging contaminants the field of environmental sciences. - Covers most aspects of the most predominant emerging contaminants in the environment, including in soil, air, and water - Describes the occurrence of these contaminants, the problems they cause, and the sustainable practices to deal with the contaminants - Includes data from case studies to provide real-world examples of sustainable practices and emerging contaminant remediation