Recent Advances in Differential Equations and Control Theory

Recent Advances in Differential Equations and Control Theory

Author: Concepción Muriel

Publisher: Springer Nature

Published: 2021-03-13

Total Pages: 102

ISBN-13: 3030618757

DOWNLOAD EBOOK

This book collects the latest results and new trends in the application of mathematics to some problems in control theory, numerical simulation and differential equations. The work comprises the main results presented at a thematic minisymposium, part of the 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), held in Valencia, Spain, from 15 to 18 July 2019. The topics covered in the 6 peer-review contributions involve applications of numerical methods to real problems in oceanography and naval engineering, as well as relevant results on switching control techniques, which can have multiple applications in industrial complexes, electromechanical machines, biological systems, etc. Problems in control theory, as in most engineering problems, are modeled by differential equations, for which standard solving procedures may be insufficient. The book also includes recent geometric and analytical methods for the search of exact solutions for differential equations, which serve as essential tools for analyzing problems in many scientific disciplines.


Recent Advances in Differential Equations and Mathematical Physics

Recent Advances in Differential Equations and Mathematical Physics

Author: Nikolai Chernov

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 354

ISBN-13: 0821838407

DOWNLOAD EBOOK

Surveys topics in differential equations that are associated with mathematical physics. This book includes such topics as asymptotic formulas for the ground-state energy of fermionic gas, $J$-self adjoint Dirac operators, and spectral theory of Schrodinger operators. It is suitable for mathematicians and physicists.


Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics

Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics

Author: Elina Shishkina

Publisher: Academic Press

Published: 2020-07-24

Total Pages: 592

ISBN-13: 0128197811

DOWNLOAD EBOOK

Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights.


Recent Advances in Differential Equations and Applications

Recent Advances in Differential Equations and Applications

Author: Juan Luis García Guirao

Publisher: Springer

Published: 2019-01-04

Total Pages: 250

ISBN-13: 3030003418

DOWNLOAD EBOOK

This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.


Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev

Publisher: Courier Corporation

Published: 1964-01-01

Total Pages: 452

ISBN-13: 9780486659640

DOWNLOAD EBOOK

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.


Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations

Author: James Kirkwood

Publisher: Academic Press

Published: 2012-01-20

Total Pages: 431

ISBN-13: 0123869110

DOWNLOAD EBOOK

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.


Partial Differential Equations in Classical Mathematical Physics

Partial Differential Equations in Classical Mathematical Physics

Author: Isaak Rubinstein

Publisher: Cambridge University Press

Published: 1998-04-28

Total Pages: 704

ISBN-13: 9780521558464

DOWNLOAD EBOOK

The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.


Evolution Equations, Feshbach Resonances, Singular Hodge Theory

Evolution Equations, Feshbach Resonances, Singular Hodge Theory

Author: Michael Demuth

Publisher: Wiley-VCH

Published: 1999-04-22

Total Pages: 436

ISBN-13:

DOWNLOAD EBOOK

Evolution equations describe many processes in science and engineering, and they form a central topic in mathematics. The first three contributions to this volume address parabolic evolutionary problems: The opening paper treats asymptotic solutions to singular parabolic problems with distribution and hyperfunction data. The theory of the asymptotic Laplace transform is developed in the second paper and is applied to semigroups generated by operators with large growth of the resolvent. An article follows on solutions by local operator methods of time-dependent singular problems in non-cylindrical domains. The next contribution addresses spectral properties of systems of pseudodifferential operators when the characteristic variety has a conical intersection. Bohr-Sommerfeld quantization rules and first order exponential asymptotics of the resonance widths are established under various semiclassical regimes. In the following article, the limiting absorption principle is proven for certain self-adjoint operators. Applications include Hamiltonians with magnetic fields, Dirac Hamiltonians, and the propagation of waves in inhomogeneous media. The final topic develops Hodge theory on manifolds with edges; its authors introduce a concept of elliptic complexes, prove a Hodge decomposition theorem, and study the asymptotics of harmonic forms.


Equations of Mathematical Physics

Equations of Mathematical Physics

Author: A. N. Tikhonov

Publisher: Courier Corporation

Published: 2013-09-16

Total Pages: 802

ISBN-13: 0486173364

DOWNLOAD EBOOK

Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.


Mathematical Methods in Physics

Mathematical Methods in Physics

Author: Victor Henner

Publisher: CRC Press

Published: 2009-06-18

Total Pages: 859

ISBN-13: 1439865167

DOWNLOAD EBOOK

This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that