Advances in Agronomy continues to be recognized as a leading reference and a first-rate source for the latest research in agronomy. As always, the subjects covered are varied and exemplary of the myriad of subject matter dealt with by this long-running serial. - Maintains the highest impact factor among serial publications in agriculture - Presents timely reviews on important agronomy issues - Enjoys a long-standing reputation for excellence in the field
Advances in Agronomy continues to be recognized as a leading reference and a first-rate source of the latest research in agronomy. Major reviews deal with the current topics of interest to agronomists, as well as crop and soil scientists. As always, the subjects covered are varied and exemplary of the myriad subject matter dealt with by this long-running serial. Editor Donald Sparks, former president of the Soil Science Society of America and current president of the International Union of Soil Science, is the S. Hallock du Pont Chair of Plant and Soil Sciences at The University of Delaware. Volume 82 contains eight state-of-the-art reviews on topics of interest in the plant and soil sciences. Three of the reviews present cutting-edge molecular scale techniques and approaches that directly impact food production, crop improvement, and environmental quality and sustainability.
The Alliums are some of the most ancient cultivated crops and include onions, garlic, leeks and other related plants. This book provides an up-to-date review of Allium science for postgraduates and researchers. It contains commissioned chapters on topics that have shown major advances particularly in the last ten years such as molecular biology, floriculture and biofertilizers.
Find up-to-date information on barley for malting, food, and animal feed!This comprehensive book covers every aspect of barley from molecular biology to agronomy of yield and quality. In addition to the exposition of the basic concepts, Barley Science explains the latest developments in the field. In addition, this remarkable book presents ideas and techniques for bridging the gap between physiology and breeding. Beginning with the history of this ancient cultivated grain, Barley Science presents state-of-the-art information on genetics and breeding, physiology, and agronomy. One chapter explains the CERES computer simulation of barley growth, development, and yield. Every chapter includes a thorough literature review, and you will find many helpful tables and figures.Barley Science offers cutting-edge information on the latest developments in the field, including: wild barley as a source of genes for crop improvement genetics and breeding for specific attributes genetic engineering determining barley yield under stress new breeding strategies for disease resistance choosing genotype, sowing date, and plant density for malting barley enhancing pre-harvest sprouting resistance barley proteins and malting performance Written by the top experts in the field, Barley Science is an excellent update and broadening of the information found in previous barley books. Agronomists, breeders, geneticists, and physiologists--and their students--will turn again and again to this essential resource.
The science and technology of producing and using plants for food, fiber, fuel and land reclamation is called agronomy. It integrates the principles of soil science, plant genetics, plant physiology and meteorology. Plant breeding is an important tool of agronomy. The selective breeding of plants has resulted in the production of crops with enhanced yields and nutritional value. This has been observed in major crops such as wheat, corn and soybeans. There has also been a significant use of biotechnology to extend and expedite the development of crop varieties with desired traits. Modern agronomy also focuses on soil analysis to determine the soil that is most conducive to plant growth. These analyses aid in balancing soil nutrients for optimum results. The ever growing need of advanced agricultural technology is the reason that has fueled the research in the field of agronomy in recent times. This book is a compilation of chapters that discuss the most vital concepts and emerging trends in agronomy. Coherent flow of topics, student-friendly language and extensive use of examples make it an invaluable source of knowledge.
This volume addresses recent developments in weed science. These developments include conservation agriculture and conservation tillage, climate change, environmental concerns about the runoff of agrochemicals, resistance of weeds and crops to herbicides, and the need for a vastly improved understanding of weed ecology and herbicide use. The book provides details on harnessing knowledge of weed ecology to improve weed management in different crops and presents information on opportunities in weed management in different crops. Current management practices are also covered, along with guidance for selecting herbicides and using them effectively. Written by experts in the field and supplemented with instructive illustrations and tables, Recent Advances in Weed Management is an essential reference for agricultural specialists and researchers, government agents, extension specialists, and professionals throughout the agrochemical industry, as well as a foundation for advanced students taking courses in weed science.
Agriculture has experienced a dramatic change during the past decades. The change has been structural and technological. Structural changes can be seen in the size of current farms; not long ago, agricultural production was organized around small farms, whereas nowadays the agricultural landscape is dominated by large farms. Large farms have better means of applying new technologies, and therefore technological advances have been a driving force in changing the farming structure. New technologies continue to emerge, and their mastery and use in requires that farmers gather more information and make more complex technological choices. In particular, the advent of the Internet has opened vast opportunities for communication and business opportunities within the agricultural com- nity. But at the same time, it has created another class of complex issues that need to be addressed sooner rather than later. Farmers and agricultural researchers are faced with an overwhelming amount of information they need to analyze and synthesize to successfully manage all the facets of agricultural production. This daunting challenge requires new and complex approaches to farm management. A new type of agricultural management system requires active cooperation among multidisciplinary and multi-institutional teams and ref- ing of existing and creation of new analytical theories with potential use in agriculture. Therefore, new management agricultural systems must combine the newest achievements in many scientific domains such as agronomy, economics, mathematics, and computer science, to name a few.
Water stress and heat stress are considered to be two primary factors that limit crop production in many parts of the world. Global warming appears to be increasing the water requirements of plants. Understanding the impact of water deficit on plant physiological processes and efficient water management are of great concern in maintaining food production to meet ever increasing world food demand. The book addresses various climatic soil and plant factors that contribute to the water use efficiency in plants subjected to water stress. It covers all issues related to soil, plant and climatic factors that contribute to the crop responses to water stress. The books advances the knowledge in improving and sustaining crop yields in ever increasing unpredictable climatic fluctuations This book uses crop simulation models for response of crops to limited water under various management and climatic conditions.