Real world drug discovery : a chemist's guide to biotech and pharmaceutical research
Author:
Publisher:
Published: 2008
Total Pages: 515
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 2008
Total Pages: 515
ISBN-13:
DOWNLOAD EBOOKAuthor: Robert M. Rydzewski
Publisher: Academic Press
Published: 2020-01-01
Total Pages: 600
ISBN-13: 9780128024850
DOWNLOAD EBOOKReal World Drug Discovery
Author: Elsevier Science & Technology Books
Publisher: Academic Press
Published: 2016
Total Pages:
ISBN-13: 9780128022160
DOWNLOAD EBOOKAuthor: Robert M. Rydzewski
Publisher: Elsevier
Published: 2010-07-07
Total Pages: 535
ISBN-13: 0080914888
DOWNLOAD EBOOKDrug discovery increasingly requires a common understanding by researchers of the many and diverse factors that go into the making of new medicines. The scientist entering the field will immediately face important issues for which his education may not have prepared him: project teams, patent law, consultants, target product profiles, industry trends, Gantt charts, target validation, pharmacokinetics, proteomics, phenotype assays, biomarkers, and many other unfamiliar topics for which a basic understanding must somehow be obtained. Even the more experienced scientist can find it frustratingly difficult to get an overview of the many factors involved in modern drug discovery and often only after years of exploring does a whole and integrated picture emerge in the mind of the researcher.Real World Drug Discovery: A Chemist's Guide to Biotech and Pharmaceutical Research presents this kind of map of the landscape of drug discovery. In a single, readable volume it outlines processes and explains essential concepts and terms for the recent science graduate wondering what to expect in pharma or biotech, the medicinal chemist seeking a broader and more timely understanding of the industry, or the contractor or collaborator whose understanding of the commercial drug discovery process could increase the value of his contribution to it. - Interviews with well-known experts in many of the fields involved, giving insightful comments from authorities on many of the sub-disciplines important to cutting edge drug discovery. - Helpful suggestions gleaned from years of experience in biotech and pharma, which represents a repository drug discovery "lore" not previously available in any book. - "Periodic Table of Drugs" listing current top-selling drugs arranged by target and laid out so that structural similarities and differences are plain and clear. - Extensive use of diagrams to illustrate concepts like biotech startup models, preteomic profiling for target identification, Gantt charts for project planning, etc.
Author: Nathan Brown
Publisher: Royal Society of Chemistry
Published: 2020-11-04
Total Pages: 425
ISBN-13: 1839160543
DOWNLOAD EBOOKFollowing significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Author: Susan Miller
Publisher: Elsevier
Published: 2023-03-09
Total Pages: 684
ISBN-13: 0128243058
DOWNLOAD EBOOKManaging the Drug Discovery Process, Second Edition thoroughly examines the current state of pharmaceutical research and development by providing experienced perspectives on biomedical research, drug hunting and innovation, including the requisite educational paths that enable students to chart a career path in this field. The book also considers the interplay of stakeholders, consumers, and drug firms with respect to a myriad of factors. Since drug research can be a high-risk, high-payoff industry, it is important to students and researchers to understand how to effectively and strategically manage both their careers and the drug discovery process. This new edition takes a closer look at the challenges and opportunities for new medicines and examines not only the current research milieu that will deliver novel therapies, but also how the latest discoveries can be deployed to ensure a robust healthcare and pharmacoeconomic future. All chapters have been revised and expanded with new discussions on remarkable advances including CRISPR and the latest gene therapies, RNA-based technologies being deployed as vaccines as well as therapeutics, checkpoint inhibitors and CAR-T approaches that cure cancer, diagnostics and medical devices, entrepreneurship, and AI. Written in an engaging manner and including memorable insights, this book is aimed at anyone interested in helping to save countless more lives through science. A valuable and compelling resource, this is a must-read for all students, educators, practitioners, and researchers at large—indeed, anyone who touches this critical sphere of global impact—in and around academia and the biotechnology/pharmaceutical industry. - Considers drug discovery in multiple R&D venues - big pharma, large biotech, start-up ventures, academia, and nonprofit research institutes - with a clear description of the degrees and training that will prepare students well for a career in this arena - Analyzes the organization of pharmaceutical R&D, taking into account human resources considerations like recruitment and configuration, management of discovery and development processes, and the coordination of internal research within, and beyond, the organization, including outsourced work - Presents a consistent, well-connected, and logical dialogue that readers will find both comprehensive and approachable - Addresses new areas such as CRISPR gene editing technologies and RNA-based drugs and vaccines, personalized medicine and ethical and moral issues, AI/machine learning and other in silico approaches, as well as completely updating all chapters
Author: Yuriy A. Abramov
Publisher: John Wiley & Sons
Published: 2016-05-20
Total Pages: 440
ISBN-13: 1119229197
DOWNLOAD EBOOKThis book is the first to combine computational material science and modeling of molecular solid states for pharmaceutical industry applications. • Provides descriptive and applied state-of-the-art computational approaches and workflows to guide pharmaceutical solid state chemistry experiments and to support/troubleshoot API solid state selection • Includes real industrial case examples related to application of modeling methods in problem solving • Useful as a supplementary reference/text for undergraduate, graduate and postgraduate students in computational chemistry, pharmaceutical and biotech sciences, and materials science
Author: Shaker A. Mousa
Publisher: CRC Press
Published: 2020-01-17
Total Pages: 681
ISBN-13: 1000021270
DOWNLOAD EBOOKThe enormous advances in nanomedicine and precision medicine in the past two decades necessitated this comprehensive reference, which can be relied upon by researchers, clinicians, pharmaceutical scientists, regulators, policymakers, and lawyers alike. This standalone, full-color resource broadly surveys innovative technologies and advances pertaining to nanomedicine and precision medicine. In addition, it addresses often-neglected yet crucial areas such as translational medicine, intellectual property law, ethics, policy, FDA regulatory issues, nano-nomenclature, and artificial nano-machines—all accomplished in a user-friendly, broad yet interconnected format. The book is essential reading for the novice and the expert alike in diverse fields such as medicine, law, pharmacy, genomics, biomedical sciences, ethics, and regulatory science. The book’s multidisciplinary approach will attract a global audience and serve as a valuable reference resource for industry, academia, and government.
Author: Daria Mochly-Rosen
Publisher: Springer Science & Business Media
Published: 2014-07-08
Total Pages: 186
ISBN-13: 3319022016
DOWNLOAD EBOOK"A lot of hard-won knowledge is laid out here in a brief but informative way. Every topic is well referenced, with citations from both the primary literature and relevant resources from the internet." Review from Nature Chemical Biology Written by the founders of the SPARK program at Stanford University, this book is a practical guide designed for professors, students and clinicians at academic research institutions who are interested in learning more about the drug development process and how to help their discoveries become the novel drugs of the future. Often many potentially transformative basic science discoveries are not pursued because they are deemed ‘too early’ to attract industry interest. There are simple, relatively cost-effective things that academic researchers can do to advance their findings to the point that they can be tested in the clinic or attract more industry interest. Each chapter broadly discusses an important topic in drug development, from preclinical work in assay design through clinical trial design, regulatory issues and marketing assessments. After the practical overview provided here, the reader is encouraged to consult more detailed texts on specific topics of interest. "I would actually welcome it if this book’s intended audience were broadened even more. Younger scientists starting out in the drug industry would benefit from reading it and getting some early exposure to parts of the process that they’ll eventually have to understand. Journalists covering the industry (especially the small startup companies) will find this book a good reality check for many an over-hopeful press release. Even advanced investors who might want to know what really happens in the labs will find information here that might otherwise be difficult to track down in such a concentrated form."
Author: Richard B. Silverman
Publisher: Academic Press
Published: 2014-03-29
Total Pages: 537
ISBN-13: 0123820316
DOWNLOAD EBOOKThe Organic Chemistry of Drug Design and Drug Action, Third Edition, represents a unique approach to medicinal chemistry based on physical organic chemical principles and reaction mechanisms that rationalize drug action, which allows reader to extrapolate those core principles and mechanisms to many related classes of drug molecules. This new edition includes updates to all chapters, including new examples and references. It reflects significant changes in the process of drug design over the last decade and preserves the successful approach of the previous editions while including significant changes in format and coverage. This text is designed for undergraduate and graduate students in chemistry studying medicinal chemistry or pharmaceutical chemistry; research chemists and biochemists working in pharmaceutical and biotechnology industries. - Updates to all chapters, including new examples and references - Chapter 1 (Introduction): Completely rewritten and expanded as an overview of topics discussed in detail throughout the book - Chapter 2 (Lead Discovery and Lead Modification): Sections on sources of compounds for screening including library collections, virtual screening, and computational methods, as well as hit-to-lead and scaffold hopping; expanded sections on sources of lead compounds, fragment-based lead discovery, and molecular graphics; and deemphasized solid-phase synthesis and combinatorial chemistry - Chapter 3 (Receptors): Drug-receptor interactions, cation-p and halogen bonding; atropisomers; case history of the insomnia drug suvorexant - Chapter 4 (Enzymes): Expanded sections on enzyme catalysis in drug discovery and enzyme synthesis - Chapter 5 (Enzyme Inhibition and Inactivation): New case histories: - for competitive inhibition, the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib and Abelson kinase inhibitor, imatinib - for transition state analogue inhibition, the purine nucleoside phosphorylase inhibitors, forodesine and DADMe-ImmH, as well as the mechanism of the multisubstrate analog inhibitor isoniazid - for slow, tight-binding inhibition, the dipeptidyl peptidase-4 inhibitor, saxagliptin - Chapter 7 (Drug Resistance and Drug Synergism): This new chapter includes topics taken from two chapters in the previous edition, with many new examples - Chapter 8 (Drug Metabolism): Discussions of toxicophores and reactive metabolites - Chapter 9 (Prodrugs and Drug Delivery Systems): Discussion of antibody–drug conjugates