Real-variable Methods in Harmonic Analysis
Author:
Publisher: Academic Press
Published: 1986-11-06
Total Pages: 475
ISBN-13: 0080874428
DOWNLOAD EBOOKReal-variable Methods in Harmonic Analysis
Read and Download eBook Full
Author:
Publisher: Academic Press
Published: 1986-11-06
Total Pages: 475
ISBN-13: 0080874428
DOWNLOAD EBOOKReal-variable Methods in Harmonic Analysis
Author: Elias M. Stein
Publisher: Princeton University Press
Published: 2016-06-02
Total Pages: 712
ISBN-13: 140088392X
DOWNLOAD EBOOKThis book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, L\sup\ estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.
Author: Alberto Torchinsky
Publisher: Elsevier
Published: 2016-06-03
Total Pages: 475
ISBN-13: 1483268888
DOWNLOAD EBOOKReal-Variable Methods in Harmonic Analysis deals with the unity of several areas in harmonic analysis, with emphasis on real-variable methods. Active areas of research in this field are discussed, from the Calderón-Zygmund theory of singular integral operators to the Muckenhoupt theory of Ap weights and the Burkholder-Gundy theory of good ? inequalities. The Calderón theory of commutators is also considered. Comprised of 17 chapters, this volume begins with an introduction to the pointwise convergence of Fourier series of functions, followed by an analysis of Cesàro summability. The discussion then turns to norm convergence; the basic working principles of harmonic analysis, centered around the Calderón-Zygmund decomposition of locally integrable functions; and fractional integration. Subsequent chapters deal with harmonic and subharmonic functions; oscillation of functions; the Muckenhoupt theory of Ap weights; and elliptic equations in divergence form. The book also explores the essentials of the Calderón-Zygmund theory of singular integral operators; the good ? inequalities of Burkholder-Gundy; the Fefferman-Stein theory of Hardy spaces of several real variables; Carleson measures; and Cauchy integrals on Lipschitz curves. The final chapter presents the solution to the Dirichlet and Neumann problems on C1-domains by means of the layer potential methods. This monograph is intended for graduate students with varied backgrounds and interests, ranging from operator theory to partial differential equations.
Author: Camil Muscalu
Publisher: Cambridge University Press
Published: 2013-01-31
Total Pages: 389
ISBN-13: 0521882451
DOWNLOAD EBOOKThis contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Author: Camil Muscalu
Publisher: Cambridge University Press
Published: 2013-01-31
Total Pages: 341
ISBN-13: 1107031826
DOWNLOAD EBOOKThis contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Author: Alexey N. Karapetyants
Publisher: Springer Nature
Published: 2021-09-27
Total Pages: 585
ISBN-13: 3030774937
DOWNLOAD EBOOKThis volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
Author: Javier Duoandikoetxea Zuazo
Publisher: American Mathematical Soc.
Published: 2001-01-01
Total Pages: 248
ISBN-13: 9780821883846
DOWNLOAD EBOOKFourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autonoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university. Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, H1, BMO spaces, and the T1 theorem, are discussed. Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform in higher dimensions. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between H1, BMO, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the T1 theorem, which has been of crucial importance in the field. This volume has been updated and translated from the original Spanish edition (1995). Minor changes have been made to the core of the book; however, the sections, "Notes and Further Results" have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.
Author: Baoxiang Wang
Publisher: World Scientific
Published: 2011-08-10
Total Pages: 298
ISBN-13: 9814458392
DOWNLOAD EBOOKThis monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods.This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.
Author: Elias M. Stein
Publisher: Princeton University Press
Published: 1993-08
Total Pages: 710
ISBN-13: 0691032165
DOWNLOAD EBOOKThis book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, L\sup\ estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.
Author: Yitzhak Katznelson
Publisher:
Published: 1968
Total Pages: 292
ISBN-13:
DOWNLOAD EBOOK