The author defines and constructs mixed Hodge structures on real schematic homotopy types of complex quasi-projective varieties, giving mixed Hodge structures on their homotopy groups and pro-algebraic fundamental groups. The author also shows that these split on tensoring with the ring R[x] equipped with the Hodge filtration given by powers of (x−i), giving new results even for simply connected varieties. The mixed Hodge structures can thus be recovered from the Gysin spectral sequence of cohomology groups of local systems, together with the monodromy action at the Archimedean place. As the basepoint varies, these structures all become real variations of mixed Hodge structure.
The goal of this memoir is to provide the foundations for the locally analytic representation theory that is required in three of the author's other papers on this topic. In the course of writing those papers the author found it useful to adopt a particular point of view on locally analytic representation theory: namely, regarding a locally analytic representation as being the inductive limit of its subspaces of analytic vectors (of various “radii of analyticity”). The author uses the analysis of these subspaces as one of the basic tools in his study of such representations. Thus in this memoir he presents a development of locally analytic representation theory built around this point of view. The author has made a deliberate effort to keep the exposition reasonably self-contained and hopes that this will be of some benefit to the reader.
Given a -dimensional lamination endowed with a Riemannian metric, the author introduces the notion of a multiplicative cocycle of rank , where and are arbitrary positive integers. The holonomy cocycle of a foliation and its exterior powers as well as its tensor powers provide examples of multiplicative cocycles. Next, the author defines the Lyapunov exponents of such a cocycle with respect to a harmonic probability measure directed by the lamination. He also proves an Oseledec multiplicative ergodic theorem in this context. This theorem implies the existence of an Oseledec decomposition almost everywhere which is holonomy invariant. Moreover, in the case of differentiable cocycles the author establishes effective integral estimates for the Lyapunov exponents. These results find applications in the geometric and dynamical theory of laminations. They are also applicable to (not necessarily closed) laminations with singularities. Interesting holonomy properties of a generic leaf of a foliation are obtained. The main ingredients of the author's method are the theory of Brownian motion, the analysis of the heat diffusions on Riemannian manifolds, the ergodic theory in discrete dynamics and a geometric study of laminations.
In this paper, the authors study the direct and inverse scattering theory at fixed energy for massless charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In the first part, they establish the existence and asymptotic completeness of time-dependent wave operators associated to our Dirac fields. This leads to the definition of the time-dependent scattering operator that encodes the far-field behavior (with respect to a stationary observer) in the asymptotic regions of the black hole: the event and cosmological horizons. The authors also use the miraculous property (quoting Chandrasekhar)—that the Dirac equation can be separated into radial and angular ordinary differential equations—to make the link between the time-dependent scattering operator and its stationary counterpart. This leads to a nice expression of the scattering matrix at fixed energy in terms of stationary solutions of the system of separated equations. In a second part, the authors use this expression of the scattering matrix to study the uniqueness property in the associated inverse scattering problem at fixed energy. Using essentially the particular form of the angular equation (that can be solved explicitly by Frobenius method) and the Complex Angular Momentum technique on the radial equation, the authors are finally able to determine uniquely the metric of the black hole from the knowledge of the scattering matrix at a fixed energy.
This book is based on lectures given at the Graduate Summer School of the 2015 Park City Mathematics Institute program “Geometry of moduli spaces and representation theory”, and is devoted to several interrelated topics in algebraic geometry, topology of algebraic varieties, and representation theory. Geometric representation theory is a young but fast developing research area at the intersection of these subjects. An early profound achievement was the famous conjecture by Kazhdan–Lusztig about characters of highest weight modules over a complex semi-simple Lie algebra, and its subsequent proof by Beilinson-Bernstein and Brylinski-Kashiwara. Two remarkable features of this proof have inspired much of subsequent development: intricate algebraic data turned out to be encoded in topological invariants of singular geometric spaces, while proving this fact required deep general theorems from algebraic geometry. Another focus of the program was enumerative algebraic geometry. Recent progress showed the role of Lie theoretic structures in problems such as calculation of quantum cohomology, K-theory, etc. Although the motivation and technical background of these constructions is quite different from that of geometric Langlands duality, both theories deal with topological invariants of moduli spaces of maps from a target of complex dimension one. Thus they are at least heuristically related, while several recent works indicate possible strong technical connections. The main goal of this collection of notes is to provide young researchers and experts alike with an introduction to these areas of active research and promote interaction between the two related directions.
This volume contains the proceedings of the VBAC 2022 Conference on Moduli Spaces and Vector Bundles—New Trends, held in honor of Peter Newstead's 80th birthday, from July 25–29, 2022, at the University of Warwick, Coventry, United Kingdom. The papers focus on the theory of stability conditions in derived categories, non-reductive geometric invariant theory, Brill-Noether theory, and Higgs bundles and character varieties. The volume includes both survey and original research articles. Most articles contain substantial background and will be helpful to both novices and experts.
Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsvath and Szabo). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun.Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kahler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the 11/8 conjecture. LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even well-known 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the geometry is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra.The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems. - From the Preface by the Editors
These proceedings contain the contributions of some of the participants in the "intensive research period" held at the De Giorgi Research Center in Pisa, during the period May-June 2010. The central theme of this research period was the study of configuration spaces from various points of view. This topic originated from the intersection of several classical theories: Braid groups and related topics, configurations of vectors (of great importance in Lie theory and representation theory), arrangements of hyperplanes and of subspaces, combinatorics, singularity theory. Recently, however, configuration spaces have acquired independent interest and indeed the contributions in this volume go far beyond the above subjects, making it attractive to a large audience of mathematicians.
"Proceedings of the NATO Advanced Study Institute on Higher-Dimensional Geometry over Finite Fields, Geottingen, Germany, 25 June-6 July 2007."--T.p. verso.