Real Analysis and Probability

Real Analysis and Probability

Author: R. M. Dudley

Publisher: Cambridge University Press

Published: 2002-10-14

Total Pages: 570

ISBN-13: 9780521007542

DOWNLOAD EBOOK

This classic text offers a clear exposition of modern probability theory.


Boundary Value Problems and Markov Processes

Boundary Value Problems and Markov Processes

Author: Kazuaki Taira

Publisher: Springer Nature

Published: 2020-07-01

Total Pages: 502

ISBN-13: 3030487881

DOWNLOAD EBOOK

This 3rd edition provides an insight into the mathematical crossroads formed by functional analysis (the macroscopic approach), partial differential equations (the mesoscopic approach) and probability (the microscopic approach) via the mathematics needed for the hard parts of Markov processes. It brings these three fields of analysis together, providing a comprehensive study of Markov processes from a broad perspective. The material is carefully and effectively explained, resulting in a surprisingly readable account of the subject. The main focus is on a powerful method for future research in elliptic boundary value problems and Markov processes via semigroups, the Boutet de Monvel calculus. A broad spectrum of readers will easily appreciate the stochastic intuition that this edition conveys. In fact, the book will provide a solid foundation for both researchers and graduate students in pure and applied mathematics interested in functional analysis, partial differential equations, Markov processes and the theory of pseudo-differential operators, a modern version of the classical potential theory.


Real Analysis (Classic Version)

Real Analysis (Classic Version)

Author: Halsey Royden

Publisher: Pearson Modern Classics for Advanced Mathematics Series

Published: 2017-02-13

Total Pages: 0

ISBN-13: 9780134689494

DOWNLOAD EBOOK

This text is designed for graduate-level courses in real analysis. Real Analysis, 4th Edition, covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis.


Markov Chains and Stochastic Stability

Markov Chains and Stochastic Stability

Author: Sean Meyn

Publisher: Cambridge University Press

Published: 2009-04-02

Total Pages: 623

ISBN-13: 0521731828

DOWNLOAD EBOOK

New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.


Image Analysis, Random Fields and Markov Chain Monte Carlo Methods

Image Analysis, Random Fields and Markov Chain Monte Carlo Methods

Author: Gerhard Winkler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 389

ISBN-13: 3642557600

DOWNLOAD EBOOK

"This book is concerned with a probabilistic approach for image analysis, mostly from the Bayesian point of view, and the important Markov chain Monte Carlo methods commonly used....This book will be useful, especially to researchers with a strong background in probability and an interest in image analysis. The author has presented the theory with rigor...he doesn’t neglect applications, providing numerous examples of applications to illustrate the theory." -- MATHEMATICAL REVIEWS


Markov Processes, Semigroups, and Generators

Markov Processes, Semigroups, and Generators

Author: Vassili N. Kolokoltsov

Publisher: Walter de Gruyter

Published: 2011

Total Pages: 449

ISBN-13: 3110250101

DOWNLOAD EBOOK

This work offers a highly useful, well developed reference on Markov processes, the universal model for random processes and evolutions. The wide range of applications, in exact sciences as well as in other areas like social studies, require a volume that offers a refresher on fundamentals before conveying the Markov processes and examples for


Ergodic Behavior of Markov Processes

Ergodic Behavior of Markov Processes

Author: Alexei Kulik

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-11-20

Total Pages: 316

ISBN-13: 3110458713

DOWNLOAD EBOOK

The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and Processes Markov Chains with Discrete State Spaces General Markov Chains: Ergodicity in Total Variation MarkovProcesseswithContinuousTime Weak Ergodic Rates Part II: Limit Theorems The Law of Large Numbers and the Central Limit Theorem Functional Limit Theorems


Introduction to Ergodic rates for Markov chains and processes

Introduction to Ergodic rates for Markov chains and processes

Author: Kulik, Alexei

Publisher: Universitätsverlag Potsdam

Published: 2015-10-20

Total Pages: 138

ISBN-13: 3869563389

DOWNLOAD EBOOK

The present lecture notes aim for an introduction to the ergodic behaviour of Markov Processes and addresses graduate students, post-graduate students and interested readers. Different tools and methods for the study of upper bounds on uniform and weak ergodic rates of Markov Processes are introduced. These techniques are then applied to study limit theorems for functionals of Markov processes. This lecture course originates in two mini courses held at University of Potsdam, Technical University of Berlin and Humboldt University in spring 2013 and Ritsumameikan University in summer 2013. Alexei Kulik, Doctor of Sciences, is a Leading researcher at the Institute of Mathematics of Ukrainian National Academy of Sciences.