Readings in Hardware/Software Co-Design

Readings in Hardware/Software Co-Design

Author: Giovanni De Micheli

Publisher: Morgan Kaufmann

Published: 2002

Total Pages: 714

ISBN-13: 1558607021

DOWNLOAD EBOOK

This title serves as an introduction ans reference for the field, with the papers that have shaped the hardware/software co-design since its inception in the early 90s.


Hardware/Software Co-Design for Data Flow Dominated Embedded Systems

Hardware/Software Co-Design for Data Flow Dominated Embedded Systems

Author: Ralf Niemann

Publisher: Springer Science & Business Media

Published: 1998-10-31

Total Pages: 252

ISBN-13: 9780792382997

DOWNLOAD EBOOK

Introduces different tasks of hardware/software co-design, including system specification, hardware/software partitioning, co-synthesis, and co-simulation. Summarizes and classifies co-design tools and methods for these tasks, and presents the co-design tool COOL, useful for solving co-design tasks for the class of data-flow dominated embedded systems. Primary emphasis is on hardware/software partitioning and the co-synthesis phase and their coupling. A mathematical formulation of the hardware/software partitioning problem is given, and several novel approaches are presented and compared for solving the partitioning problem. Annotation copyrighted by Book News, Inc., Portland, OR


Hardware/Software Co-Design

Hardware/Software Co-Design

Author: Giovanni DeMicheli

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 473

ISBN-13: 9400901879

DOWNLOAD EBOOK

Concurrent design, or co-design of hardware and software is extremely important for meeting design goals, such as high performance, that are the key to commercial competitiveness. Hardware/Software Co-Design covers many aspects of the subject, including methods and examples for designing: (1) general purpose and embedded computing systems based on instruction set processors; (2) telecommunication systems using general purpose digital signal processors as well as application specific instruction set processors; (3) embedded control systems and applications to automotive electronics. The book also surveys the areas of emulation and prototyping systems with field programmable gate array technologies, hardware/software synthesis and verification, and industrial design trends. Most contributions emphasize the design methodology, the requirements and state of the art of computer aided co-design tools, together with current design examples.


A Practical Introduction to Hardware/Software Codesign

A Practical Introduction to Hardware/Software Codesign

Author: Patrick R. Schaumont

Publisher: Springer Science & Business Media

Published: 2010-09-09

Total Pages: 403

ISBN-13: 1441960007

DOWNLOAD EBOOK

This is a practical book for computer engineers who want to understand or implement hardware/software systems. It focuses on problems that require one to combine hardware design with software design – such problems can be solved with hardware/software codesign. When used properly, hardware/software co- sign works better than hardware design or software design alone: it can improve the overall performance of digital systems, and it can shorten their design time. Hardware/software codesign can help a designer to make trade-offs between the ?exibility and the performanceof a digital system. To achieve this, a designer needs to combine two radically different ways of design: the sequential way of dec- position in time, using software, with the parallel way of decomposition in space, using hardware. Intended Audience This book assumes that you have a basic understandingof hardware that you are - miliar with standard digital hardware componentssuch as registers, logic gates, and components such as multiplexers and arithmetic operators. The book also assumes that you know how to write a program in C. These topics are usually covered in an introductory course on computer engineering or in a combination of courses on digital design and software engineering.


Computer Organization and Design RISC-V Edition

Computer Organization and Design RISC-V Edition

Author: David A. Patterson

Publisher: Morgan Kaufmann

Published: 2017-05-12

Total Pages: 700

ISBN-13: 0128122765

DOWNLOAD EBOOK

The new RISC-V Edition of Computer Organization and Design features the RISC-V open source instruction set architecture, the first open source architecture designed to be used in modern computing environments such as cloud computing, mobile devices, and other embedded systems. With the post-PC era now upon us, Computer Organization and Design moves forward to explore this generational change with examples, exercises, and material highlighting the emergence of mobile computing and the Cloud. Updated content featuring tablet computers, Cloud infrastructure, and the x86 (cloud computing) and ARM (mobile computing devices) architectures is included. An online companion Web site provides advanced content for further study, appendices, glossary, references, and recommended reading. - Features RISC-V, the first such architecture designed to be used in modern computing environments, such as cloud computing, mobile devices, and other embedded systems - Includes relevant examples, exercises, and material highlighting the emergence of mobile computing and the cloud


Introduction to Embedded Systems, Second Edition

Introduction to Embedded Systems, Second Edition

Author: Edward Ashford Lee

Publisher: MIT Press

Published: 2017-01-06

Total Pages: 562

ISBN-13: 0262340526

DOWNLOAD EBOOK

An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.


Hardware/Software Co-Design

Hardware/Software Co-Design

Author: Jørgen Staunstrup

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 406

ISBN-13: 147572649X

DOWNLOAD EBOOK

Introduction to Hardware-Software Co-Design presents a number of issues of fundamental importance for the design of integrated hardware software products such as embedded, communication, and multimedia systems. This book is a comprehensive introduction to the fundamentals of hardware/software co-design. Co-design is still a new field but one which has substantially matured over the past few years. This book, written by leading international experts, covers all the major topics including: fundamental issues in co-design; hardware/software co-synthesis algorithms; prototyping and emulation; target architectures; compiler techniques; specification and verification; system-level specification. Special chapters describe in detail several leading-edge co-design systems including Cosyma, LYCOS, and Cosmos. Introduction to Hardware-Software Co-Design contains sufficient material for use by teachers and students in an advanced course of hardware/software co-design. It also contains extensive explanation of the fundamental concepts of the subject and the necessary background to bring practitioners up-to-date on this increasingly important topic.


Embedded System Design

Embedded System Design

Author: Frank Vahid

Publisher: John Wiley & Sons

Published: 2001-10-17

Total Pages: 346

ISBN-13: 0471386782

DOWNLOAD EBOOK

This book introduces a modern approach to embedded system design, presenting software design and hardware design in a unified manner. It covers trends and challenges, introduces the design and use of single-purpose processors ("hardware") and general-purpose processors ("software"), describes memories and buses, illustrates hardware/software tradeoffs using a digital camera example, and discusses advanced computation models, controls systems, chip technologies, and modern design tools. For courses found in EE, CS and other engineering departments.


Introduction to Mixed-Signal, Embedded Design

Introduction to Mixed-Signal, Embedded Design

Author: Alex Doboli

Publisher: Springer Science & Business Media

Published: 2010-12-17

Total Pages: 469

ISBN-13: 1441974466

DOWNLOAD EBOOK

This textbook is written for junior/senior undergraduate and first-year graduate students in the electrical and computer engineering departments. Using PSoC mixed-signal array design, the authors define the characteristics of embedd design, embedded mixed-signal architectures, and top-down design. Optimized implementations of these designs are included to illustrate the theory. Exercises are provided at the end of each chapter for practice. Topics covered include the hardware and software used to implement analog and digital interfaces, various filter structures, amplifiers and other signal-conditioning circuits, pulse-width modulators, timers, and data structures for handling multiple similar peripheral devices. The practical exercises contained in the companion laboratory manual, which was co-authored by Cypress Staff Applications Engineer Dave Van Ess, are also based on PSoC. PSoC's integrated microcontroller, highly configurable analog/digital peripherals, and a full set of development tools make it an ideal learning tool for developing mixed-signal embedded design skills.


Multicore Systems On-Chip: Practical Software/Hardware Design

Multicore Systems On-Chip: Practical Software/Hardware Design

Author: Abderazek Ben Abdallah

Publisher: Springer Science & Business Media

Published: 2013-07-20

Total Pages: 291

ISBN-13: 9491216929

DOWNLOAD EBOOK

System on chips designs have evolved from fairly simple unicore, single memory designs to complex heterogeneous multicore SoC architectures consisting of a large number of IP blocks on the same silicon. To meet high computational demands posed by latest consumer electronic devices, most current systems are based on such paradigm, which represents a real revolution in many aspects in computing. The attraction of multicore processing for power reduction is compelling. By splitting a set of tasks among multiple processor cores, the operating frequency necessary for each core can be reduced, allowing to reduce the voltage on each core. Because dynamic power is proportional to the frequency and to the square of the voltage, we get a big gain, even though we may have more cores running. As more and more cores are integrated into these designs to share the ever increasing processing load, the main challenges lie in efficient memory hierarchy, scalable system interconnect, new programming paradigms, and efficient integration methodology for connecting such heterogeneous cores into a single system capable of leveraging their individual flexibility. Current design methods tend toward mixed HW/SW co-designs targeting multicore systems on-chip for specific applications. To decide on the lowest cost mix of cores, designers must iteratively map the device’s functionality to a particular HW/SW partition and target architectures. In addition, to connect the heterogeneous cores, the architecture requires high performance complex communication architectures and efficient communication protocols, such as hierarchical bus, point-to-point connection, or Network-on-Chip. Software development also becomes far more complex due to the difficulties in breaking a single processing task into multiple parts that can be processed separately and then reassembled later. This reflects the fact that certain processor jobs cannot be easily parallelized to run concurrently on multiple processing cores and that load balancing between processing cores – especially heterogeneous cores – is very difficult.