Rational Curves on Algebraic Varieties

Rational Curves on Algebraic Varieties

Author: Janos Kollar

Publisher: Springer Science & Business Media

Published: 2013-04-09

Total Pages: 330

ISBN-13: 3662032767

DOWNLOAD EBOOK

The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This Ergebnisse volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.


Higher-Dimensional Algebraic Geometry

Higher-Dimensional Algebraic Geometry

Author: Olivier Debarre

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 245

ISBN-13: 147575406X

DOWNLOAD EBOOK

The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.


Rational Points on Varieties

Rational Points on Varieties

Author: Bjorn Poonen

Publisher: American Mathematical Soc.

Published: 2017-12-13

Total Pages: 358

ISBN-13: 1470437732

DOWNLOAD EBOOK

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.


Rational and Nearly Rational Varieties

Rational and Nearly Rational Varieties

Author: János Kollár

Publisher: Cambridge University Press

Published: 2004-04-22

Total Pages: 246

ISBN-13: 9780521832076

DOWNLOAD EBOOK

The most basic algebraic varieties are the projective spaces, and rational varieties are their closest relatives. In many applications where algebraic varieties appear in mathematics and the sciences, we see rational ones emerging as the most interesting examples. The authors have given an elementary treatment of rationality questions using a mix of classical and modern methods. Arising from a summer school course taught by János Kollár, this book develops the modern theory of rational and nearly rational varieties at a level that will particularly suit graduate students. There are numerous examples and exercises, all of which are accompanied by fully worked out solutions, that will make this book ideal as the basis of a graduate course. It will act as a valuable reference for researchers whilst helping graduate students to reach the point where they can begin to tackle contemporary research problems.


Complex Algebraic Surfaces

Complex Algebraic Surfaces

Author: Arnaud Beauville

Publisher: Cambridge University Press

Published: 1996-06-28

Total Pages: 148

ISBN-13: 9780521498425

DOWNLOAD EBOOK

Developed over more than a century, and still an active area of research today, the classification of algebraic surfaces is an intricate and fascinating branch of mathematics. In this book Professor BeauviIle gives a lucid and concise account of the subject, following the strategy of F. Enriques, but expressed simply in the language of modern topology and sheaf theory, so as to be accessible to any budding geometer. This volume is self contained and the exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.


Geometry of Higher Dimensional Algebraic Varieties

Geometry of Higher Dimensional Algebraic Varieties

Author: Thomas Peternell

Publisher: Springer Science & Business Media

Published: 1997-03-20

Total Pages: 228

ISBN-13: 9783764354909

DOWNLOAD EBOOK

This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T.


On the Geometry of Some Special Projective Varieties

On the Geometry of Some Special Projective Varieties

Author: Francesco Russo

Publisher: Springer

Published: 2016-01-25

Total Pages: 257

ISBN-13: 3319267655

DOWNLOAD EBOOK

Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne’s Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds. The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once this embedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry.


Higher Dimensional Varieties and Rational Points

Higher Dimensional Varieties and Rational Points

Author: Károly Jr. Böröczky

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 307

ISBN-13: 3662051230

DOWNLOAD EBOOK

Exploring the connections between arithmetic and geometric properties of algebraic varieties has been the object of much fruitful study for a long time, especially in the case of curves. The aim of the Summer School and Conference on "Higher Dimensional Varieties and Rational Points" held in Budapest, Hungary during September 2001 was to bring together students and experts from the arithmetic and geometric sides of algebraic geometry in order to get a better understanding of the current problems, interactions and advances in higher dimension. The lecture series and conference lectures assembled in this volume give a comprehensive introduction to students and researchers in algebraic geometry and in related fields to the main ideas of this rapidly developing area.


Hassler Whitney Collected Papers Volume I

Hassler Whitney Collected Papers Volume I

Author: James Eelles

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 603

ISBN-13: 1461229723

DOWNLOAD EBOOK

We present here the mathematical papers of Hassler Whitney. This collection contains all the published papers, with the exception of some short announcements that Whitney did not wish to be included. We also include the introduction to his book Geometric Integration Theory, and one previously unpublished manuscript on the four-color problem. The papers are presented under some broad categories: graphs· and combinatorics, differentiable functions and singularities, analytic spaces, manifolds, bundles and characteristic classes, topology and algebraic topology, geometric integration theory. Whitney intended to write an introduction to this collection. Unfortunately he left us no manuscript at the time of his death, May 10, 1989. We had discussed the possibility of using his paper "Moscow 1935 - Topology moving toward America," written for the Centennial of the American Mathematical Society, as part of his introduction to this collection, an idea which he much liked. We therefore include this paper, which contains personal information as well as mathematical reflections, as Whitney's own introduction to these volumes. Whitney's mathematical style, like his personal style, was that of an explorer and pioneer. One of the pictures included in these volumes shows him as a mountain climber. In mathematics, he preferred to work on undeveloped areas: break new ground and build foundations. During the last twenty years of his life he concentrated his efforts on developing an educational system that builds on the natural tendency in children to be explorers.


Birational Geometry of Algebraic Varieties

Birational Geometry of Algebraic Varieties

Author: Janos Kollár

Publisher: Cambridge University Press

Published: 2010-03-24

Total Pages: 254

ISBN-13: 9780511662560

DOWNLOAD EBOOK

One of the major discoveries of the past two decades in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program, or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the first comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.