This is a long awaited book on rational homotopy theory which contains all the main theorems with complete proofs, and more elementary proofs for many results that were proved ten or fifteen years ago. The authors added a frist section on classical algebraic topology to make the book accessible to students with only little background in algebraic topology.
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham’s theorem on simplicial complexes. In addition, Sullivan’s results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
This comprehensive monograph provides a self-contained treatment of the theory of I*-measure, or Sullivan's rational homotopy theory, from a constructive point of view. It centers on the notion of calculability which is due to the author himself, as are the measure-theoretical and constructive points of view in rational homotopy. The I*-measure is shown to differ from other homology and homotopy measures in that it is calculable with respect to most of the important geometric constructions encountered in algebraic topology. This approach provides a new method of treatment and leads to various new results. In particular, an axiomatic system of I*-measure is formulated, quite different in spirit from the usual Eilenberg-Steenrod axiomatic system for homology, and giving at the same time an algorithmic method of computation of the I*-measure in concrete cases. The book will be of interest to researchers in rational homotopy theory and will provide them with new ideas and lines of research to develop further.
This research monograph is a detailed account with complete proofs of rational homotopy theory for general non-simply connected spaces, based on the minimal models introduced by Sullivan in his original seminal article. Much of the content consists of new results, including generalizations of known results in the simply connected case. The monograph also includes an expanded version of recently published results about the growth and structure of the rational homotopy groups of finite dimensional CW complexes, and concludes with a number of open questions.This monograph is a sequel to the book Rational Homotopy Theory [RHT], published by Springer in 2001, but is self-contained except only that some results from [RHT] are simply quoted without proof.
Rational homotopy theory is a subfield of algebraic topology. Written by three authorities in the field, this book contains all the main theorems of the field with complete proofs. As both notation and techniques of rational homotopy theory have been considerably simplified, the book presents modern elementary proofs for many results that were proven ten or fifteen years ago.
This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities. Many modifications to the original French text have been made for this English edition, making the text easier to read, without changing its intended informal character.
A text aimed at both geometers needing the tools of rational homotopy theory to understand and discover new results concerning various geometric subjects, and topologists who require greater breadth of knowledge about geometric applications of the algebra of homotopy theory.
The rational [bold]PL de Rham theory of Sullivan is developed and generalized, using methods of Quillen's "homotopical algebra." For a field k of characteristic 0, a pair of contravariant adjoint functors A : (Simplicial sets) [right arrow over left arrow] (Commutative DG k-algebras) : F is obtained which pass to the appropriate homotopy categories. When k is the field of rationals, these functors induce equivalence between the appropriate simplicial and algebraic rational homotopy categories. The theory is not restricted to simply connected spaces. It is closely related to the theory of "rational localization" (for nilpotent spaces) and "rational completion" in general.
The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.