The climate record for the past 100,000 years clearly indicates that the climate system has undergone periodic-and often extreme-shifts, sometimes in as little as a decade or less. The causes of abrupt climate changes have not been clearly established, but the triggering of events is likely to be the result of multiple natural processes. Abrupt climate changes of the magnitude seen in the past would have far-reaching implications for human society and ecosystems, including major impacts on energy consumption and water supply demands. Could such a change happen again? Are human activities exacerbating the likelihood of abrupt climate change? What are the potential societal consequences of such a change? Abrupt Climate Change: Inevitable Surprises looks at the current scientific evidence and theoretical understanding to describe what is currently known about abrupt climate change, including patterns and magnitudes, mechanisms, and probability of occurrence. It identifies critical knowledge gaps concerning the potential for future abrupt changes, including those aspects of change most important to society and economies, and outlines a research strategy to close those gaps. Based on the best and most current research available, this book surveys the history of climate change and makes a series of specific recommendations for the future.
Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming.
The book reviews the science of climate change and explains why it is one of the most difficult problems humanity has ever tackled. Climate change is a "wicked" problem bound up with problems of population growth, environmental degradation, and world problems of growing social and economic inequality. The book explores the politicization of the topic, the polarization of opinion, and the reasons why, for some, science has become just another ideology to be contested. How do humans assess risk? Why are they are so bad at focusing on the future? How can we solve the problem of climate change? These are the questions this work answers. The goal of this new, unique Series is to offer readable, teachable "thinking frames" on today’s social problems and social issues by leading scholars, all in short 60 page or shorter formats, and available for view on http://routledge.customgateway.com/routledge-social-issues.html For instructors teaching a wide range of courses in the social sciences, the Routledge Social Issues Collection now offers the best of both worlds: originally written short texts that provide "overviews" to important social issues as well as teachable excerpts from larger works previously published by Routledge and other presses.
In 2001 a panel representing virtually all the world's governments and climate scientists announced that they had reached a consensus: the world was warming at a rate without precedent during at least the last ten millennia, and that warming was caused by the buildup of greenhouse gases from human activity. The consensus itself was at least a century in the making. The story of how scientists reached their conclusion--by way of unexpected twists and turns and in the face of formidable intellectual, financial, and political obstacles--is told for the first time in The Discovery of Global Warming. Spencer R. Weart lucidly explains the emerging science, introduces us to the major players, and shows us how the Earth's irreducibly complicated climate system was mirrored by the global scientific community that studied it. Unlike familiar tales of Science Triumphant, this book portrays scientists working on bits and pieces of a topic so complex that they could never achieve full certainty--yet so important to human survival that provisional answers were essential. Weart unsparingly depicts the conflicts and mistakes, and how they sometimes led to fruitful results. His book reminds us that scientists do not work in isolation, but interact in crucial ways with the political system and with the general public. The book not only reveals the history of global warming, but also analyzes the nature of modern scientific work as it confronts the most difficult questions about the Earth's future. Table of Contents: Preface 1. How Could Climate Change? 2. Discovering a Possibility 3. A Delicate System 4. A Visible Threat 5. Public Warnings 6. The Erratic Beast 7. Breaking into Politics 8. The Discovery Confirmed Reflections Milestones Notes Further Reading Index Reviews of this book: A soberly written synthesis of science and politics. --Gilbert Taylor, Booklist Reviews of this book: Charting the evolution and confirmation of the theory [of global warming], Spencer R. Weart, director of the Center for the History of Physics of the American Institute of Physics, dissects the interwoven threads of research and reveals the political and societal subtexts that colored scientists' views and the public reception their work received. --Andrew C. Revkin, New York Times Book Review Reviews of this book: It took a century for scientists to agree that gases produced by human activity were causing the world to warm up. Now, in an engaging book that reads like a detective story, physicist Weart reports the history of global warming theory, including the internal conflicts plaguing the research community and the role government has had in promoting climate studies. --Publishers Weekly Reviews of this book: It is almost two centuries since the French mathematician Jean Baptiste Fourier discovered that the Earth was far warmer than it had any right to be, given its distance from the Sun...Spencer Weart's book about how Fourier's initially inconsequential discovery finally triggered urgent debate about the future habitability of the Earth is lucid, painstaking and commendably brief, packing everything into 200 pages. --Fred Pearce, The Independent Reviews of this book: [The Discovery of Global Warming] is a well-written, well-researched and well-balanced account of the issues involved...This is not a sermon for the faithful, or verses from Revelation for the evangelicals, but a serious summary for those who like reasoned argument. Read it--and be converted. --John Emsley, Times Literary Supplement Reviews of this book: This is a terrific book...Perhaps the finest compliment I could give this book is to report that I intend to use it instead of my own book...for my climate class. The Discovery of Global Warming is more up-to-date, better balanced historically, beautifully written and, not least important, short and to the point. I think the [Intergovernmental Panel on Climate Change] needs to enlist a few good historians like Weart for its next assessment. --Stephen H. Schneider, Nature Reviews of this book: This short, well-written book by a science historian at the American Institute of Physics adds a serious voice to the overheated debate about global warming and would serve as a great starting point for anyone who wants to better understand the issue. --Maureen Christie, American Scientist Reviews of this book: I was very pleasantly surprised to find that Spencer Weart's account provides much valuable and interesting material about how the discipline developed--not just from the perspective of climate science but also within the context of the field's relation to other scientific disciplines, the media, political trends, and even 20th-century history (particularly the Cold War). In addition, Weart has done a valuable service by recording for posterity background information on some of the key discoveries and historical figures who contributed to our present understanding of the global warming problem. --Thomas J. Crowley, Science Reviews of this book: Weart has done us all a service by bringing the discovery of global warming into a short, compendious and persuasive book for a general readership. He is especially strong on the early days and the scientific background. --Crispin Tickell, Times Higher Education Supplement A Capricious Beast Ever since the days when he had trudged around fossil lake basins in Nevada for his doctoral thesis, Wally Broecker had been interested in sudden climate shifts. The reported sudden jumps of CO2 in Greenland ice cores stimulated him to put this interest into conjunction with his oceanographic interests. The result was a surprising and important calculation. The key was what Broecker later described as a "great conveyor belt'"of seawater carrying heat northward. . . . The energy carried to the neighborhood of Iceland was "staggering," Broecker realized, nearly a third as much as the Sun sheds upon the entire North Atlantic. If something were to shut down the conveyor, climate would change across much of the Northern Hemisphere' There was reason to believe a shutdown could happen swiftly. In many regions the consequences for climate would be spectacular. Broecker was foremost in taking this disagreeable news to the public. In 1987 he wrote that we had been treating the greenhouse effect as a 'cocktail hour curiosity,' but now 'we must view it as a threat to human beings and wildlife.' The climate system was a capricious beast, he said, and we were poking it with a sharp stick. I found the book enjoyable, thoughtful, and an excellent introduction to the history of what may be one of the most important subjects of the next one hundred years. --Clark Miller, University of Wisconsin The Discovery of Global Warming raises important scientific issues and topics and includes essential detail. Readers should be able to follow the discussion and emerge at the end with a good understanding of how scientists have developed a consensus on global warming, what it is, and what issues now face human society. --Thomas R. Dunlap, Texas A&M University
Climate is changing, forced out of the range of the past million years by levels of carbon dioxide and other greenhouse gases not seen in the Earth's atmosphere for a very, very long time. Lacking action by the world's nations, it is clear that the planet will be warmer, sea level will rise, and patterns of rainfall will change. But the future is also partly uncertain-there is considerable uncertainty about how we will arrive at that different climate. Will the changes be gradual, allowing natural systems and societal infrastructure to adjust in a timely fashion? Or will some of the changes be more abrupt, crossing some threshold or "tipping point" to change so fast that the time between when a problem is recognized and when action is required shrinks to the point where orderly adaptation is not possible? Abrupt Impacts of Climate Change is an updated look at the issue of abrupt climate change and its potential impacts. This study differs from previous treatments of abrupt changes by focusing on abrupt climate changes and also abrupt climate impacts that have the potential to severely affect the physical climate system, natural systems, or human systems, often affecting multiple interconnected areas of concern. The primary timescale of concern is years to decades. A key characteristic of these changes is that they can come faster than expected, planned, or budgeted for, forcing more reactive, rather than proactive, modes of behavior. Abrupt Impacts of Climate Change summarizes the state of our knowledge about potential abrupt changes and abrupt climate impacts and categorizes changes that are already occurring, have a high probability of occurrence, or are unlikely to occur. Because of the substantial risks to society and nature posed by abrupt changes, this report recommends the development of an Abrupt Change Early Warning System that would allow for the prediction and possible mitigation of such changes before their societal impacts are severe. Identifying key vulnerabilities can help guide efforts to increase resiliency and avoid large damages from abrupt change in the climate system, or in abrupt impacts of gradual changes in the climate system, and facilitate more informed decisions on the proper balance between mitigation and adaptation. Although there is still much to learn about abrupt climate change and abrupt climate impacts, to willfully ignore the threat of abrupt change could lead to more costs, loss of life, suffering, and environmental degradation. Abrupt Impacts of Climate Change makes the case that the time is here to be serious about the threat of tipping points so as to better anticipate and prepare ourselves for the inevitable surprises.
Climate change can reasonably be expected to increase the frequency and intensity of a variety of potentially disruptive environmental events-slowly at first, but then more quickly. It is prudent to expect to be surprised by the way in which these events may cascade, or have far-reaching effects. During the coming decade, certain climate-related events will produce consequences that exceed the capacity of the affected societies or global systems to manage; these may have global security implications. Although focused on events outside the United States, Climate and Social Stress: Implications for Security Analysis recommends a range of research and policy actions to create a whole-of-government approach to increasing understanding of complex and contingent connections between climate and security, and to inform choices about adapting to and reducing vulnerability to climate change.
As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.
Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change. Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.
The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.