Random Matrices: High Dimensional Phenomena

Random Matrices: High Dimensional Phenomena

Author: Gordon Blower

Publisher: Cambridge University Press

Published: 2009-10-08

Total Pages: 448

ISBN-13: 1139481959

DOWNLOAD EBOOK

This book focuses on the behaviour of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups and probability measures in a style suitable for applications in random matrix theory. Later chapters use modern convexity theory to establish subtle results about the convergence of eigenvalue distributions as the size of the matrices increases. Random matrices are viewed as geometrical objects with large dimension. The book analyzes the concentration of measure phenomenon, which describes how measures behave on geometrical objects with large dimension. To prove such results for random matrices, the book develops the modern theory of optimal transportation and proves the associated functional inequalities involving entropy and information. These include the logarithmic Sobolev inequality, which measures how fast some physical systems converge to equilibrium.


High-Dimensional Probability

High-Dimensional Probability

Author: Roman Vershynin

Publisher: Cambridge University Press

Published: 2018-09-27

Total Pages: 299

ISBN-13: 1108415199

DOWNLOAD EBOOK

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.


The Random Matrix Theory of the Classical Compact Groups

The Random Matrix Theory of the Classical Compact Groups

Author: Elizabeth S. Meckes

Publisher: Cambridge University Press

Published: 2019-08-01

Total Pages: 225

ISBN-13: 1108317995

DOWNLOAD EBOOK

This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.


A Dynamical Approach to Random Matrix Theory

A Dynamical Approach to Random Matrix Theory

Author: László Erdős

Publisher: American Mathematical Soc.

Published: 2017-08-30

Total Pages: 239

ISBN-13: 1470436485

DOWNLOAD EBOOK

A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.


High-Dimensional Statistics

High-Dimensional Statistics

Author: Martin J. Wainwright

Publisher: Cambridge University Press

Published: 2019-02-21

Total Pages: 571

ISBN-13: 1108498027

DOWNLOAD EBOOK

A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.


An Introduction to Matrix Concentration Inequalities

An Introduction to Matrix Concentration Inequalities

Author: Joel Tropp

Publisher:

Published: 2015-05-27

Total Pages: 256

ISBN-13: 9781601988386

DOWNLOAD EBOOK

Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.


A First Course in Random Matrix Theory

A First Course in Random Matrix Theory

Author: Marc Potters

Publisher: Cambridge University Press

Published: 2020-12-03

Total Pages: 371

ISBN-13: 1108488080

DOWNLOAD EBOOK

An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.


Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory

Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory

Author: Roberto Fernandez

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 446

ISBN-13: 3662028662

DOWNLOAD EBOOK

Simple random walks - or equivalently, sums of independent random vari ables - have long been a standard topic of probability theory and mathemat ical physics. In the 1950s, non-Markovian random-walk models, such as the self-avoiding walk,were introduced into theoretical polymer physics, and gradu ally came to serve as a paradigm for the general theory of critical phenomena. In the past decade, random-walk expansions have evolved into an important tool for the rigorous analysis of critical phenomena in classical spin systems and of the continuum limit in quantum field theory. Among the results obtained by random-walk methods are the proof of triviality of the cp4 quantum field theo ryin space-time dimension d (::::) 4, and the proof of mean-field critical behavior for cp4 and Ising models in space dimension d (::::) 4. The principal goal of the present monograph is to present a detailed review of these developments. It is supplemented by a brief excursion to the theory of random surfaces and various applications thereof. This book has grown out of research carried out by the authors mainly from 1982 until the middle of 1985. Our original intention was to write a research paper. However, the writing of such a paper turned out to be a very slow process, partly because of our geographical separation, partly because each of us was involved in other projects that may have appeared more urgent.


Embedded Random Matrix Ensembles in Quantum Physics

Embedded Random Matrix Ensembles in Quantum Physics

Author: V.K.B. Kota

Publisher: Springer

Published: 2014-07-08

Total Pages: 401

ISBN-13: 3319045679

DOWNLOAD EBOOK

Although used with increasing frequency in many branches of physics, random matrix ensembles are not always sufficiently specific to account for important features of the physical system at hand. One refinement which retains the basic stochastic approach but allows for such features consists in the use of embedded ensembles. The present text is an exhaustive introduction to and survey of this important field. Starting with an easy-to-read introduction to general random matrix theory, the text then develops the necessary concepts from the beginning, accompanying the reader to the frontiers of present-day research. With some notable exceptions, to date these ensembles have primarily been applied in nuclear spectroscopy. A characteristic example is the use of a random two-body interaction in the framework of the nuclear shell model. Yet, topics in atomic physics, mesoscopic physics, quantum information science and statistical mechanics of isolated finite quantum systems can also be addressed using these ensembles. This book addresses graduate students and researchers with an interest in applications of random matrix theory to the modeling of more complex physical systems and interactions, with applications such as statistical spectroscopy in mind.