Deals with the structural analysis of vector and random (or both) valued countably additive measures, and used for integral representations of random fields. This book analyzes several stationary aspects and related processes.
This volume contains a selection of articles on the theme "vector measures, integration and applications" together with some related topics. The articles consist of both survey style and original research papers, are written by experts in thearea and present a succinct account of recent and up-to-date knowledge. The topic is interdisciplinary by nature and involves areas such as measure and integration (scalar, vector and operator-valued), classical and harmonic analysis, operator theory, non-commutative integration, andfunctional analysis. The material is of interest to experts, young researchers and postgraduate students.
This book is devoted to the development of optimal control theory for finite dimensional systems governed by deterministic and stochastic differential equations driven by vector measures. The book deals with a broad class of controls, including regular controls (vector-valued measurable functions), relaxed controls (measure-valued functions) and controls determined by vector measures, where both fully and partially observed control problems are considered. In the past few decades, there have been remarkable advances in the field of systems and control theory thanks to the unprecedented interaction between mathematics and the physical and engineering sciences. Recently, optimal control theory for dynamic systems driven by vector measures has attracted increasing interest. This book presents this theory for dynamic systems governed by both ordinary and stochastic differential equations, including extensive results on the existence of optimal controls and necessary conditions for optimality. Computational algorithms are developed based on the optimality conditions, with numerical results presented to demonstrate the applicability of the theoretical results developed in the book. This book will be of interest to researchers in optimal control or applied functional analysis interested in applications of vector measures to control theory, stochastic systems driven by vector measures, and related topics. In particular, this self-contained account can be a starting point for further advances in the theory and applications of dynamic systems driven and controlled by vector measures.
Vector and Operator Valued Measures and Applications is a collection of papers presented at the Symposium on Vector and Operator Valued Measures and Applications held in Alta, Utah, on August 7-12, 1972. The symposium provided a forum for discussing vector and operator valued measures and their applications to various areas such as stochastic integration, electrical engineering, control theory, and scattering theory. Comprised of 37 chapters, this volume begins by presenting two remarks related to the result due to Kolmogorov: the first is a theorem holding for nonnegative definite functions from T X T to C (where T is an arbitrary index set), and the second applies to separable Hausdorff spaces T, continuous nonnegative definite functions ? from T X T to C, and separable Hilbert spaces H. The reader is then introduced to the extremal structure of the range of a controlled vector measure ? with values in a Hausdorff locally convex space X over the field of reals; how the theory of vector measures is connected with the theory of compact and weakly compact mappings on certain function spaces; and Daniell and Daniell-Bochner type integrals. Subsequent chapters focus on the disintegration of measures and lifting; products of spectral measures; and mean convergence of martingales of Pettis integrable functions. This book should be of considerable use to workers in the field of mathematics.
Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.
The book's content is focused on rigorous and advanced quantitative methods for the pricing and hedging of counterparty credit and funding risk. The new general theory that is required for this methodology is developed from scratch, leading to a consistent and comprehensive framework for counterparty credit and funding risk, inclusive of collateral, netting rules, possible debit valuation adjustments, re-hypothecation and closeout rules. The book however also looks at quite practical problems, linking particular models to particular 'concrete' financial situations across asset classes, including interest rates, FX, commodities, equity, credit itself, and the emerging asset class of longevity. The authors also aim to help quantitative analysts, traders, and anyone else needing to frame and price counterparty credit and funding risk, to develop a 'feel' for applying sophisticated mathematics and stochastic calculus to solve practical problems. The main models are illustrated from theoretical formulation to final implementation with calibration to market data, always keeping in mind the concrete questions being dealt with. The authors stress that each model is suited to different situations and products, pointing out that there does not exist a single model which is uniformly better than all the others, although the problems originated by counterparty credit and funding risk point in the direction of global valuation. Finally, proposals for restructuring counterparty credit risk, ranging from contingent credit default swaps to margin lending, are considered.
An applied treatment of the key methods and state-of-the-art tools for visualizing and understanding statistical data Smoothing of Multivariate Data provides an illustrative and hands-on approach to the multivariate aspects of density estimation, emphasizing the use of visualization tools. Rather than outlining the theoretical concepts of classification and regression, this book focuses on the procedures for estimating a multivariate distribution via smoothing. The author first provides an introduction to various visualization tools that can be used to construct representations of multivariate functions, sets, data, and scales of multivariate density estimates. Next, readers are presented with an extensive review of the basic mathematical tools that are needed to asymptotically analyze the behavior of multivariate density estimators, with coverage of density classes, lower bounds, empirical processes, and manipulation of density estimates. The book concludes with an extensive toolbox of multivariate density estimators, including anisotropic kernel estimators, minimization estimators, multivariate adaptive histograms, and wavelet estimators. A completely interactive experience is encouraged, as all examples and figurescan be easily replicated using the R software package, and every chapter concludes with numerous exercises that allow readers to test their understanding of the presented techniques. The R software is freely available on the book's related Web site along with "Code" sections for each chapter that provide short instructions for working in the R environment. Combining mathematical analysis with practical implementations, Smoothing of Multivariate Data is an excellent book for courses in multivariate analysis, data analysis, and nonparametric statistics at the upper-undergraduate and graduatelevels. It also serves as a valuable reference for practitioners and researchers in the fields of statistics, computer science, economics, and engineering.
defined as elements of Grassmann algebra (an algebra with anticom muting generators). The derivatives of these elements with respect to anticommuting generators were defined according to algebraic laws, and nothing like Newton's analysis arose when Martin's approach was used. Later, during the next twenty years, the algebraic apparatus de veloped by Martin was used in all mathematical works. We must point out here the considerable contribution made by F. A. Berezin, G 1. Kac, D. A. Leites, B. Kostant. In their works, they constructed a new division of mathematics which can naturally be called an algebraic superanalysis. Following the example of physicists, researchers called the investigations carried out with the use of commuting and anticom muting coordinates supermathematics; all mathematical objects that appeared in supermathematics were called superobjects, although, of course, there is nothing "super" in supermathematics. However, despite the great achievements in algebraic superanaly sis, this formalism could not be regarded as a generalization to the case of commuting and anticommuting variables from the ordinary Newton analysis. What is more, Schwinger's formalism was still used in practically all physical works, on an intuitive level, and physicists regarded functions of anticommuting variables as "real functions" == maps of sets and not as elements of Grassmann algebras. In 1974, Salam and Strathdee proposed a very apt name for a set of super points. They called this set a superspace.