Rainfall Thresholds and Other Approaches for Landslide Prediction and Early Warning

Rainfall Thresholds and Other Approaches for Landslide Prediction and Early Warning

Author: Samuele Segoni

Publisher: MDPI

Published: 2021-06-22

Total Pages: 222

ISBN-13: 3036509305

DOWNLOAD EBOOK

Landslides are destructive processes causing casualties and damage worldwide. The majority of the landslides are triggered by intense and/or prolonged rainfall. Therefore, the prediction of the occurrence of rainfall-induced landslides is an important scientific and social issue. To mitigate the risk posed by rainfall-induced landslides, landslide early warning systems (LEWS) can be built and applied at different scales as effective non-structural mitigation measures. Usually, the core of a LEWS is constituted of a mathematical model that predicts landslide occurrence in the monitored areas. In recent decades, rainfall thresholds have become a widespread and well established technique for the prediction of rainfall-induced landslides, and for the setting up of prototype or operational LEWS. A rainfall threshold expresses, with a mathematic law, the rainfall amount that, when reached or exceeded, is likely to trigger one or more landslides. Rainfall thresholds can be defined with relatively few parameters and are very straightforward to operate, because their application within LEWS is usually based only on the comparison of monitored and/or forecasted rainfall. This Special Issue collects contributions on the recent research advances or well-documented applications of rainfall thresholds, as well as other innovative methods for landslide prediction and early warning. Contributions regarding the description of a LEWS or single components of LEWS (e.g., monitoring approaches, forecasting models, communication strategies, and emergency management) are also welcome. We encourage, in particular, the submission of contributions concerning the definition and validation of rainfall thresholds, and their operative implementation in LEWS. Other approaches for the forecasting of landslides are also of interest, such as physically based modelling, hazard mapping, and the monitoring of hydrologic and geotechnical indicators, especially when described in the framework of an operational or prototype early warning system.


A Safer Future

A Safer Future

Author: National Research Council

Publisher: National Academies Press

Published: 1991-02-01

Total Pages: 85

ISBN-13: 0309045460

DOWNLOAD EBOOK

Initial priorities for U.S. participation in the International Decade for Natural Disaster Reduction, declared by the United Nations, are contained in this volume. It focuses on seven issues: hazard and risk assessment; awareness and education; mitigation; preparedness for emergency response; recovery and reconstruction; prediction and warning; learning from disasters; and U.S. participation internationally. The committee presents its philosophy of calls for broad public and private participation to reduce the toll of disasters.


Landslide Analysis and Early Warning Systems

Landslide Analysis and Early Warning Systems

Author: Benni Thiebes

Publisher: Springer Science & Business Media

Published: 2012-01-21

Total Pages: 272

ISBN-13: 3642275265

DOWNLOAD EBOOK

Recent landslide events demonstrate the need to improve landslide forecasting and early warning capabilities in order to reduce related risks and protect human lives. In this thesis, local and regional investigations were carried out to analyse landslide characteristics in the Swabian Alb region, and to develop prototypic landslide early warning systems. In the local study area, an extensive hydrological and slope movement monitoring system was installed on a seasonally reactivated landslide body located in Lichtenstein- Unterhausen. Monitoring data was analysed to assess the influence of rainfall and snow-melt on groundwater conditions, and the initiation of slope movements. The coupled hydrology-slope stability model CHASM was applied to detect areas most prone to slope failures, and to simulate slope stability using a variety of input data. Subsequently, CHASM was refined and two web-based applications were developed: a technical early warning system to constantly simulate slope stability integrating rainfall measurements, hydrological monitoring data and weather forecasts; and a decision-support system allowing for quick calculation of stability for freely selectable slope profiles. On the regional scale, available landslide inventory data were analysed for their use in evaluation of rainfall thresholds proposed in other studies. Adequate landslide events were selected and their triggering rainfall and snow-melting conditions were compared to intensity-duration and cumulative thresholds. Based on the results, a regional landslide early warning system was developed and implemented as a webbased application. Both, the local and the regional landslide early warning systems are part of a holistic and integrative early warning chain developed by the ILEWS project, and could easily be transferred to other landslide prone areas.


Landslides

Landslides

Author: Kyoji Sassa

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 385

ISBN-13: 3540286802

DOWNLOAD EBOOK

Based on contributions to the first General Assembly of the International Consortium on Landslides, this reference and status report emphasizes the mechanisms of different types of landslides, landslide risk analysis, and sustainable disaster management. It comprises the achievements of the ICL over the past three years, since the Kyoto assembly. It consists of three parts: research results of the International Programme on Landslides (IPL); contributions on landslide risk analysis; and articles on sustainable disaster management. In addition, the history of the ICL activities (under the support of UNESCO, WMO, FAO, UN/ISDR, and UNU) is recounted to create a comprehensive overview of international activity on landslides. The contributions reflect a wide range of topics and concerns, randing from field studies, identification of objects of cultural heritage at landslide risk, as well as landslide countermeasures.


Landslides and Engineered Slopes. Experience, Theory and Practice

Landslides and Engineered Slopes. Experience, Theory and Practice

Author: Stefano Aversa

Publisher: CRC Press

Published: 2018-04-17

Total Pages: 3200

ISBN-13: 1315349205

DOWNLOAD EBOOK

Landslides and Engineered Slopes. Experience, Theory and Practice contains the invited lectures and all papers presented at the 12th International Symposium on Landslides, (Naples, Italy, 12-19 June 2016). The book aims to emphasize the relationship between landslides and other natural hazards. Hence, three of the main sessions focus on Volcanic-induced landslides, Earthquake-induced landslides and Weather-induced landslides respectively, while the fourth main session deals with Human-induced landslides. Some papers presented in a special session devoted to "Subareal and submarine landslide processes and hazard” and in a “Young Session” complete the books. Landslides and Engineered Slopes. Experience, Theory and Practice underlines the importance of the classic approach of modern science, which moves from experience to theory, as the basic instrument to study landslides. Experience is the key to understand the natural phenomena focusing on all the factors that play a major role. Theory is the instrument to manage the data provided by experience following a mathematical approach; this allows not only to clarify the nature and the deep causes of phenomena but mostly, to predict future and, if required, manage similar events. Practical benefits from the results of theory to protect people and man-made works. Landslides and Engineered Slopes. Experience, Theory and Practice is useful to scientists and practitioners working in the areas of rock and soil mechanics, geotechnical engineering, engineering geology and geology.


Satellite Rainfall Applications for Surface Hydrology

Satellite Rainfall Applications for Surface Hydrology

Author: Mekonnen Gebremichael

Publisher: Springer Science & Business Media

Published: 2009-12-02

Total Pages: 326

ISBN-13: 904812915X

DOWNLOAD EBOOK

With contributions from a panel of researchers from a wide range of fields, the chapters of this book focus on evaluating the potential, utility and application of high resolution satellite precipitation products in relation to surface hydrology.


Understanding and Reducing Landslide Disaster Risk

Understanding and Reducing Landslide Disaster Risk

Author: Nicola Casagli

Publisher: Springer Nature

Published: 2020-12-21

Total Pages: 367

ISBN-13: 3030603113

DOWNLOAD EBOOK

This book is a part of ICL new book series “ICL Contribution to Landslide Disaster Risk Reduction” founded in 2019. Peer-reviewed papers submitted to the Fifth World Landslide Forum were published in six volumes of this book series. This book contains the followings: • One theme lecture and one keynote lecture• Monitoring and remote sensing for landslide risk mitigation, including one keynote lecture• Landslide early warning systems, forecasting models and time prediction of landslides Prof. Nicola Casagli is a Vice President and President-elect of the International Consortium on Landslides (ICL) for 2021–2023. He is Professor of engineering geology at the Department of Earth Sciences, University of Florence, and President of the National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy. Dr. Veronica Tofani is an Associate Professor at the Department of Earth Sciences, University of Florence, and Program Coordinator of the UNESCO Chair on Prevention and Sustainable Management of Geo-hydrological hazards, University of Florence. Prof. Kyoji Sassa is the Founding President and the Secretary-General of the International Consortium on Landslides (ICL). He has been the Editor-in-Chief of International Journal Landslides since its foundation in 2004. Prof. Peter Bobrowsky is the President of the International Consortium on Landslides. He is a Senior Scientist of Geological Survey of Canada, Ottawa, Canada. Prof. Kaoru Takara is the Executive Director of the International Consortium on Landslides. He is a Professor and Dean of Graduate School of Advanced Integrated Studies (GSAIS) in Human Survivability (Shishu-Kan), Kyoto University.


Landslides

Landslides

Author: John J. Clague

Publisher: Cambridge University Press

Published: 2012-08-23

Total Pages: 435

ISBN-13: 1107002060

DOWNLOAD EBOOK

A comprehensive, one-stop synthesis of landslide science, for researchers and graduate students in geomorphology, engineering geology and geophysics.


Precipitation: Advances in Measurement, Estimation and Prediction

Precipitation: Advances in Measurement, Estimation and Prediction

Author: Silas C. Michaelides

Publisher: Springer Science & Business Media

Published: 2008-02-27

Total Pages: 552

ISBN-13: 3540776559

DOWNLOAD EBOOK

This volume is the outcome of contributions from 51 scientists who were invited to expose their latest findings on precipitation research and in particular, on the measurement, estimation and prediction of precipitation. The reader is presented with a blend of theoretical, mathematical and technical treatise of precipitation science but also with authentic applications, ranging from local field experiments and country-scale campaigns to multinational space endeavors.


GIS Landslide

GIS Landslide

Author: Hiromitsu Yamagishi

Publisher: Springer

Published: 2017-05-16

Total Pages: 223

ISBN-13: 4431543910

DOWNLOAD EBOOK

This book presents landslide studies using the geographic information system (GIS), which includes not only the science of GIS and remote sensing, but also technical innovations, such as detailed light detection and ranging profiles, among others. To date most of the research on landslides has been found in journals on topography, geology, geo-technology, landslides, and GIS, and is limited to specific scientific aspects. Although journal articles on GIS using landslide studies are abundant, there are very few books on this topic. This book is designed to fill that gap and show how the latest GIS technology can contribute in terms of landslide studies. In a related development, the GIS Landslide Workshop was established in Japan 7 years ago in order to communicate and solve the scientific as well as technical problems of GIS analyses, such as how to use GIS software and its functions. The workshop has significantly contributed to progress in the field. Included among the chapters of this book are GIS using susceptibility mapping, analyses of deep-seated and shallow landslides, measuring and visualization of landslide distribution in relation to topography, geological facies and structures, rivers, land use, and infrastructures such as roads and streets. Filled with photographs, figures, and tables, this book is of great value to researchers in the fields of geography, geology, seismology, environment, remote sensing, and atmospheric research, as well as to students in these fields.