Radiomics and Radiogenomics

Radiomics and Radiogenomics

Author: Ruijiang Li

Publisher: CRC Press

Published: 2019-07-09

Total Pages: 420

ISBN-13: 1351208268

DOWNLOAD EBOOK

Radiomics and Radiogenomics: Technical Basis and Clinical Applications provides a first summary of the overlapping fields of radiomics and radiogenomics, showcasing how they are being used to evaluate disease characteristics and correlate with treatment response and patient prognosis. It explains the fundamental principles, technical bases, and clinical applications with a focus on oncology. The book’s expert authors present computational approaches for extracting imaging features that help to detect and characterize disease tissues for improving diagnosis, prognosis, and evaluation of therapy response. This book is intended for audiences including imaging scientists, medical physicists, as well as medical professionals and specialists such as diagnostic radiologists, radiation oncologists, and medical oncologists. Features Provides a first complete overview of the technical underpinnings and clinical applications of radiomics and radiogenomics Shows how they are improving diagnostic and prognostic decisions with greater efficacy Discusses the image informatics, quantitative imaging, feature extraction, predictive modeling, software tools, and other key areas Covers applications in oncology and beyond, covering all major disease sites in separate chapters Includes an introduction to basic principles and discussion of emerging research directions with a roadmap to clinical translation


Radiomics and Radiogenomics in Neuro-oncology

Radiomics and Radiogenomics in Neuro-oncology

Author: Hassan Mohy-ud-Din

Publisher: Springer Nature

Published: 2020-02-24

Total Pages: 100

ISBN-13: 3030401243

DOWNLOAD EBOOK

This book constitutes the proceedings of the First International Workshop on Radiomics and Radiogenomics in Neuro-oncology, RNO-AI 2019, which was held in conjunction with MICCAI in Shenzhen, China, in October 2019. The 10 full papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with the development of tools that can automate the analysis and synthesis of neuro-oncologic imaging.


Big Data in Radiation Oncology

Big Data in Radiation Oncology

Author: Jun Deng

Publisher: CRC Press

Published: 2019-03-07

Total Pages: 323

ISBN-13: 1351801112

DOWNLOAD EBOOK

Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.


Multidisciplinary Computational Anatomy

Multidisciplinary Computational Anatomy

Author: Makoto Hashizume

Publisher: Springer Nature

Published: 2021-11-30

Total Pages: 370

ISBN-13: 9811643253

DOWNLOAD EBOOK

This volume thoroughly describes the fundamentals of a new multidisciplinary field of study that aims to deepen our understanding of the human body by combining medical image processing, mathematical analysis, and artificial intelligence. Multidisciplinary Computational Anatomy (MCA) offers an advanced diagnosis and therapeutic navigation system to help detect or predict human health problems from the micro-level to macro-level using a four-dimensional, dynamic approach to human anatomy: space, time, function, and pathology. Applying this dynamic and “living” approach in the clinical setting will promote better planning for – and more accurate, effective, and safe implementation of – medical management. Multidisciplinary Computational Anatomy will appeal not only to clinicians but also to a wide readership in various scientific fields such as basic science, engineering, image processing, and biomedical engineering. All chapters were written by respected specialists and feature abundant color illustrations. Moreover, the findings presented here share new insights into unresolved issues in the diagnosis and treatment of disease, and into the healthy human body.


Image-Guided and Adaptive Radiation Therapy

Image-Guided and Adaptive Radiation Therapy

Author: Robert D. Timmerman

Publisher: Lippincott Williams & Wilkins

Published: 2012-10-09

Total Pages: 384

ISBN-13: 1469801876

DOWNLOAD EBOOK

This book provides detailed, state-of-the-art information and guidelines on the latest developments, innovations, and clinical procedures in image-guided and adaptive radiation therapy. The first section discusses key methodological and technological issues in image-guided and adaptive radiation therapy, including use of implanted fiducial markers, management of respiratory motion, image-guided stereotactic radiosurgery and stereotactic body radiation therapy, three-dimensional conformal brachytherapy, target definition and localization, and PET/CT and biologically conformal radiation therapy. The second section provides practical clinical information on image-guided adaptive radiation therapy for cancers at all common anatomic sites and for pediatric cancers. The third section offers practical guidelines for establishing an effective image-guided adaptive radiation therapy program.


Therapy Response Imaging in Oncology

Therapy Response Imaging in Oncology

Author: Mizuki Nishino

Publisher: Springer Nature

Published: 2020-01-07

Total Pages: 266

ISBN-13: 3030311716

DOWNLOAD EBOOK

This book is a detailed guide to therapy response imaging in cancer patients that fully takes into account the revolutionary progress and paradigm shift in treatment approaches for advanced disease. The opening chapters describe the role of imaging as a “common language” for tumor response evaluation in oncology and address challenges and strategies in the era of precision cancer therapy and cancer immunotherapy. Practical pitfalls are discussed, with emphasis on the importance of approaching cancer as a systemic disease and the need for increased awareness of drug toxicity due to novel therapies. Therapy response imaging in a wide range of cancer types is then comprehensively described and illustrated, using a disease-specific approach. A concluding section focuses on emerging approaches and future directions, including radiomics/radiogenomics, co-clinical imaging, and molecular and functional imaging. Therapy Response Imaging in Oncology will be of high value for radiologists, nuclear medicine physicians, and oncologists. It will also be of interest to cancer care providers and oncology trial investigators.


Glioma Imaging

Glioma Imaging

Author: Whitney B. Pope

Publisher: Springer Nature

Published: 2019-11-11

Total Pages: 289

ISBN-13: 3030273598

DOWNLOAD EBOOK

This book covers physiologic, metabolic and molecular imaging for gliomas. Gliomas are the most common primary brain tumors. Imaging is critical for glioma management because of its ability to noninvasively define the anatomic location and extent of disease. While conventional MRI is used to guide current treatments, multiple studies suggest molecular features of gliomas may be identified with noninvasive imaging, including physiologic MRI and amino acid positron emission tomography (PET). These advanced imaging techniques have the promise to help elucidate underlying tumor biology and provide important information that could be integrated into routine clinical practice. The text outlines current clinical practice including common scenarios in which imaging interpretation impacts patient management. Gaps in knowledge and potential areas of advancement based on the application of more experimental imaging techniques will be discussed. In reviewing this book, readers will learn: current standard imaging methodologies used in clinical practice for patients undergoing treatment for glioma and the implications of emerging treatment modalities including immunotherapy the theoretical basis for advanced imaging techniques including diffusion and perfusion MRI, MR spectroscopy, CEST and amino acid PET the relationship between imaging and molecular/genomic glioma features incorporated in the WHO 2016 classification update and the potential application of machine learning about the recently adopted and FDA approved standard brain tumor protocol for multicenter drug trials of the gaps in knowledge that impede optimal patient management and the cutting edge imaging techniques that could address these deficits


Radiomics and Its Clinical Application

Radiomics and Its Clinical Application

Author: Jie Tian

Publisher: Academic Press

Published: 2021-06-03

Total Pages: 302

ISBN-13: 0128181028

DOWNLOAD EBOOK

The rapid development of artificial intelligence technology in medical data analysis has led to the concept of radiomics. This book introduces the essential and latest technologies in radiomics, such as imaging segmentation, quantitative imaging feature extraction, and machine learning methods for model construction and performance evaluation, providing invaluable guidance for the researcher entering the field. It fully describes three key aspects of radiomic clinical practice: precision diagnosis, the therapeutic effect, and prognostic evaluation, which make radiomics a powerful tool in the clinical setting. This book is a very useful resource for scientists and computer engineers in machine learning and medical image analysis, scientists focusing on antineoplastic drugs, and radiologists, pathologists, oncologists, as well as surgeons wanting to understand radiomics and its potential in clinical practice. - An introduction to the concepts of radiomics - In-depth presentation of the core technologies and methods - Summary of current radiomics research, perspective on the future of radiomics and the challenges ahead - An introduction to several platforms that are planned to be built: cooperation, data sharing, software, and application platforms


Molecular Targeted Radiosensitizers

Molecular Targeted Radiosensitizers

Author: Henning Willers

Publisher: Springer Nature

Published: 2020-08-10

Total Pages: 370

ISBN-13: 3030497011

DOWNLOAD EBOOK

Molecular Targeted Radiosensitizers: Opportunities and Challenges provides the reader with a comprehensive review of key pre-clinical research components required to identify effective radiosensitizing drugs. The book features discussions on the mechanisms and markers of clinical radioresistance, pre-clinical screening of targeted radiosensitizers, 3D radiation biology for studying radiosensitizers, in vivo determinations of local tumor control, genetically engineered mouse models for studying radiosensitizers, targeting the DNA damage response for radiosensitization, targeting tumor metabolism to overcome radioresistance, radiosensitizers in the era of immuno-oncology, and more. Additionally, the book features discussions on high-throughput drug screening, predictive biomarkers, pre-clinical tumor models, and the influence of the tumor microenvironment and the immune system, with a specific focus on the challenges radiation oncologists and medical oncologists currently face in testing radiosensitizers in human cancers. Edited by two acclaimed experts in radiation biology and radiosensitizers, with thirteen chapters contributed by experts, this new volume presents an in-depth look at current developments within a rapidly moving field, with a look at where the field will be heading and providing comprehensive insight into the framework of targeted radiosensitzer development. Essential reading for investigators in cancer research and radiation biology.


Imaging in Oncology

Imaging in Oncology

Author: Janet Husband

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 1521

ISBN-13: 1498716512

DOWNLOAD EBOOK

Building on the foundation laid down by the first edition, the 1998 winner of the Royal Society's award for the Multi-author Textbook of the Year, Imaging in Oncology, Second Edition presents an extensively referenced, evidence-based analysis of the role of imaging in planning treatment. Emphasizing image interpretation for tumor staging and follow