During recent years our enthusiasm for this field has continually increased. This book presents expert contributions describing the fundamental principles for the widespread use of radiative decay engineering in the biological sciences and nanotechnology.
The third edition of this established classic text reference builds upon the strengths of its very popular predecessors. Organized as a broadly useful textbook Principles of Fluorescence Spectroscopy, 3rd edition maintains its emphasis on basics, while updating the examples to include recent results from the scientific literature. The third edition includes new chapters on single molecule detection, fluorescence correlation spectroscopy, novel probes and radiative decay engineering. Includes a link to Springer Extras to download files reproducing all book artwork, for easy use in lecture slides. This is an essential volume for students, researchers, and industry professionals in biophysics, biochemistry, biotechnology, bioengineering, biology and medicine.
This, the fourth volume in the Springer series on fluorescence, focuses on the fluorescence of nanosystems, polymers and supermolecules, as well as the development and application of fluorescent probes. Aimed at researchers in organic and physical chemistry and in material sciences, emphasis is placed on the fluorescence of artificial and biological nanosystems; single molecule fluorescence and the luminescence of polymers; and micro- and nanoparticles and nanotubes.
An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.
The chapters in CYTOMETRY MCB volumes, including this 4th Edition, provide comprehensive description of particular cytometric methods and review their applications. Some chapters also describe new instrumentation and provide fundamental information on use of new fluorescent probes and on data analysis. Although the term "edition" suggests the update of earlier volumes, in fact, nearly all chapters of the 4th Edition are devoted to new topics. The authors were invited to present not only technical protocols, such as available in other methodology books that specialize in the protocol format, but also to discuss the aspects of the methodology that generally are not included in the protocols. Many chapters, thus, present the theoretical foundations of the described methods, their applicability in experimental laboratory and clinical setting, common traps and pitfalls, problems with data interpretation, comparison with alternative assays, choice of the optimal assay, etc. Some chapters review applications of cytometry and complementary methodologies to particular biological problems or clinical tasks. - Comprehensive presentation of cytometric methods covering theoretical applications, applicability, potential pitfalls, and comparisions to alternative assays - Discusses many new assays developed since the previous edition - Presents recent developments in cytometric intrumentation/technology
The Drug Discovery Handbook gives professionals a tool to facilitate drug discovery by bringing together, for the first time in one resource, a compendium of methods and techniques that need to be considered when developing new drugs. This comprehensive, practical guide presents an explanation of the latest techniques and methods in drug discovery, including: Genomics, proteomics, high-throughput screening, and systems biology Summaries of how these techniques and methods are used to discover new central nervous system agents, antiviral agents, respiratory drugs, oncology drugs, and more Specific approaches to drug discovery, including problems that are encountered, solutions to these problems, and limitations of various methods and techniques The thorough coverage and practical, scientifically valid problem-solving approach of Drug Discovery Handbook will serve as an invaluable aid in the complex task of developing new drugs.
The only comprehensive treatment of nanophotonics currently available Photonics is an all-encompassing optical science and technology which has impacted a diverse range of fields, from information technology to health care. Nanophotonics is photonic science and technology that utilizes light-matter interactions on the nanoscale, where researchers are discovering new phenomena and developing technologies that go well beyond what is possible with conventional photonics and electronics. These new technologies could include efficient solar power generation, high-bandwidth and high-speed communications, high-capacity data storage, and flexible- and high-contrast displays. In addition, nanophotonics will continue to impact biomedical technologies by providing new and powerful diagnostic techniques, as well as light-guided and activated therapies. Nanophotonics provides the only available comprehensive treatment of this exciting, multidisciplinary field, offering a wide range of topics covering: * Foundations * Materials * Applications * Theory * Fabrication Nanophotonics introduces students to important and timely concepts and provides scientists and engineers with a cutting-edge reference. The book is intended for anyone who wishes to learn about light-matter interactions on the nanoscale, as well as applications of photonics for nanotechnology and nanobiotechnology. Written by an acknowledged leader in the field, this text provides an essential resource for those interested in the future of materials science and engineering, nanotechnology, and photonics.
Nanophotonics is a newly developing and exciting field, with two main areas of interest: imaging/computer vision and data transport. The technologies developed in the field of nanophotonics have far reaching implications with a wide range of potential applications from faster computing power to medical applications, and "smart" eyeglasses to national security. Integrated Nanophotonic Devices explores one of the key technologies emerging within nanophotonics: that of nano-integrated photonic modulation devices and sensors. The authors introduce the scientific principles of these devices and provide a practical, applications-based approach to recent developments in the design, fabrication and experimentation of integrated photonic modulation circuits. For this second edition, all chapters have been expanded and updated to reflect this rapidly advancing field, and an entirely new chapter has been added to cover liquid crystals integrated with nanostructures. - Unlocks the technologies that will turn the rapidly growing research area of nanophotonics into a major area of commercial development, with applications in telecommunications, computing, security, and sensing - Nano-integrated photonic modulation devices and sensors are the components that will see nanophotonics moving out of the lab into a new generation of products and services - By covering the scientific fundamentals alongside technological applications, the authors open up this important multidisciplinary subject to readers from a range of scientific backgrounds
The second edition of Nanotechnology in Biology and Medicine is intended to serve as an authoritative reference source for a broad audience involved in the research, teaching, learning, and practice of nanotechnology in life sciences. This technology, which is on the scale of molecules, has enabled the development of devices smaller and more efficient than anything currently available. To understand complex biological nanosystems at the cellular level, we urgently need to develop a next-generation nanotechnology tool kit. It is believed that the new advances in genetic engineering, genomics, proteomics, medicine, and biotechnology will depend on our mastering of nanotechnology in the coming decades. The integration of nanotechnology, material sciences, molecular biology, and medicine opens the possibility of detecting and manipulating atoms and molecules using nanodevices, which have the potential for a wide variety of biological research topics and medical uses at the cellular level. This book presents the most recent scientific and technological advances of nanotechnology for use in biology and medicine. Each chapter provides introductory material with an overview of the topic of interest; a description of methods, protocols, instrumentation, and applications; and a collection of published data with an extensive list of references for further details. The goal of this book is to provide a comprehensive overview of the most recent advances in instrumentation, methods, and applications in areas of nanobiotechnology, integrating interdisciplinary research and development of interest to scientists, engineers, manufacturers, teachers, and students.
This book provides a series of methods for flexibly and actively manipulating thermal emission and photoluminance by advanced nanostructures—metamaterials. Nanostructures in subwavelength scales can be designed to precisely modulate light-matter interactions and thereby tailoring both thermal radiations and photon emissions. This book explores approaches for designing different kinds of nanostructures, including multilayers, gratings, nanoridges, and waveguides, to improve the flexibility and functionality of micro/nanodevices. With the help of these subwavelength nanostructures, thermal radiation and photoluminescence have been fully manipulated in near and far fields regarding to the intensity, spectrum, polarization, and direction. The proposed methods together with designed metamaterials open new avenues for designing novel micro-/nanodevices or systems for promising applications like thermal energy harvesting, detecting, sensing, and on-chip quantum-optical networks.