Researchers and engineers working in nuclear laboratories, nuclear electric plants, and elsewhere in the radiochemical industries need a comprehensive handbook describing all possible radiation-chemistry interactions between irradiation and materials, the preparation of materials under distinct radiation types, the possibility of damage of material
Researchers and engineers working in nuclear laboratories, nuclear electric plants, and elsewhere in the radiochemical industries need a comprehensive handbook describing all possible radiation-chemistry interactions between irradiation and materials, the preparation of materials under distinct radiation types, the possibility of damage of materials under irradiation, and more. Radiation nanotechnology is still practically an undeveloped field, except for some achievements in the fabrication of metallic nanoparticles under ionizing flows. Radiation Synthesis of Materials and Compounds presents the state of the art of the synthesis of materials, composites, and chemical compounds, and describes methods based on the use of ionizing radiation. It is devoted to the preparation of various types of materials (including nanomaterials) and chemical compounds using ionizing radiation (alpha particles, beta particles, gamma rays, x-rays, and neutron, proton, and ion beams). The book presents contributions from leaders in the areas of radiation synthesis of materials and radiation damage, providing thorough and expert information for a wide range of readers, including advanced students, researchers, industrial practitioners, and university educators.
An updated overview of the rapidly developing field of green techniques for organic synthesis and medicinal chemistry Green chemistry remains a high priority in modern organic synthesis and pharmaceutical R&D, with important environmental and economic implications. This book presents comprehensive coverage of green chemistry techniques for organic and medicinal chemistry applications, summarizing the available new technologies, analyzing each technique’s features and green chemistry characteristics, and providing examples to demonstrate applications for green organic synthesis and medicinal chemistry. The extensively revised edition of Green Techniques for Organic Synthesis and Medicinal Chemistry includes 7 entirely new chapters on topics including green chemistry and innovation, green chemistry metrics, green chemistry and biological drugs, and the business case for green chemistry in the generic pharmaceutical industry. It is divided into 4 parts. The first part introduces readers to the concepts of green chemistry and green engineering, global environmental regulations, green analytical chemistry, green solvents, and green chemistry metrics. The other three sections cover green catalysis, green synthetic techniques, and green techniques and strategies in the pharmaceutical industry. Includes more than 30% new and updated material—plus seven brand new chapters Edited by highly regarded experts in the field (Berkeley Cue is one of the fathers of Green Chemistry in Pharma) with backgrounds in academia and industry Brings together a team of international authors from academia, industry, government agencies, and consultancies (including John Warner, one of the founders of the field of Green Chemistry) Green Techniques for Organic Synthesis and Medicinal Chemistry, Second Edition is an essential resource on green chemistry technologies for academic researchers, R&D professionals, and students working in organic chemistry and medicinal chemistry.
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.
Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.
The sheer volume of topics which could have been included under our general title prompted us to make some rather arbitrary decisions about content. Modification by irradiation is not included because the activity in this area is being treated elsewhere. We have chosen to emphasize chemical routes to modification and have striven to pre sent as balanced a representation of current activity as time and page count permit. Industrial applications, both real and potential, are included. Where appropriate, we have encouraged the contributors to include review material to help provide the reader with adequate context. The initial chapter is a review from a historical perspective of polymer modification and contains an extensive bibliography. The remainder of the book is divided into four general areas: Reactions and Preparation of Copolymers Reactions and Preparation of Block and Graft Copolymers Modification Through Condensation Reactions Applications The chemical modification of homopolymers such as polyvinylchlo ride, polyethylene, poly(chloroalkylene sulfides), polysulfones, poly chloromethylstyrene, polyisobutylene, polysodium acrylate, polyvinyl alcohol, polyvinyl chloroformate, sulfonated polystyrene; block and graft copolymers such as poly(styrene-block-ethylene-co-butylene block-styrene), poly(I,4-polybutadiene-block ethylene oxide), star chlorine-telechelic polyisobutylene, poly(isobutylene-co-2,3-dimethyl- 1,3-butadiene), poly(styrene-co-N-butylmethacrylate); cellulose, dex tran and inulin, is described.
Radiation-Processed Polysaccharides: Emerging Roles in Agriculture is the first book to focus exclusively on this emerging and important option for reducing the overuse and negative impact of agrochemicals in agriculture. Among practices being developed for effective and eco-friendly plant growth regulators in crop production, using radiation-processed polysaccharides (RPPs) is a promising technique. Comprised of chapters from diverse areas of plant science, including agriculture, agronomy, biotechnology, nanotechnology, molecular biology, and radiation agriculture, this book provides insights into the practical application of RPPs and inspires further research toward sustainable and efficient agricultural production. Polysaccharides (sodium alginate, carrageenan, chitosan and others) in their depolymerized state are increasingly important to agriculture based on their unique biological properties, biocompatibility, biodegradability and non-toxicity. Understanding the impact of RPPs on the plant phenotype, translocation of nutrients from source to sink, signal processing, and crosstalk helps improve the applicability of RPPs and sustainable agricultural yield. Presents the latest application of RPPs for improved plant production Includes insights for abiotic stress, biotechnology, nanotechnology and molecular application Explores the efficiency of natural polysaccharides as plant growth promoters
This text on radiation chemistry covers a number of topics, including the development of radiation chemistry, sources of high-energy radiation, dosimetry, organic materials and solids and the applications of high-energy radiation in chemical synthesis and in commercial processes.
This collection of selected review papers focuses on topics such as digital radiation sensors and nanosensory systems for nanotechnology applications and integrated X-ray/PET/CT detectors; nanophosphors and nanocrystal quantum dots as X-ray radiation sensors; the luminescence efficiency of CdSe/ZnS QD and UV-induced luminescence efficiency distribution; investigations devoted to the quantum and multi-parametrical nature of disasters and the modeling thereof using quantum search and quantum query algorithms; sum-frequency-generation, IR fourier and raman spectroscopy methods; as well as investigations into the vibrational modes of viruses and other pathogenic microorganisms aimed at creating optical biosensory systems. This is followed by a review of radiation resistant semiconductor sensors and magnetic measurement instrumentation for magnetic diagnostics of high-tech fission and fusion set-ups and accelerators; the evaluation of the use of neutron-radiation, 10B-enriched semiconducting materials as thin-film, highly reliable, highly sensitive and fast-acting robust solid-state electronic neutron-detectors; and the irradiation of n-Si crystals with protons, which converts the “metallic” inclusions to “dielectric” ones in isochronous annealing, therefore leading to opto/micro/nanoelectronic devices, including nuclear radiation nanosensors. The book concludes with a comparative study of the nitride and sulfide chemisorbed layers; a chemical model that describes the formation of such layers in hydrazine-sulfide and water sodium sulfide solution; and recent developments in the microwave-enhanced processing and microwave-assisted synthesis of nanoparticles and nanomaterials using Mn(OH)2.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.