The report contains analyses of the radiation characteristics of grounded dielectric slabs fed by slots in the groundplane. Two configurations are examined, one in which a semi-infinite slab covers the slot, a second in which a finite slab does not extend over the slot. The slots are parallel to the slab edges so that only TM mode propagation is considered. Integral equations are derived for the fields at the ends of the slabs and approximate solutions are obtained. Numerical results in the form of radiation patterns are given for the case of the semi-infinite slab. It is found that the feed pattern is very close to the space-wave that would exist if the slab were infinite, but differs from it in the region near the horizon. The results can be applied to studies of electronic scanning of finite arrays of slots in the presence of surface wave structures. Recommendations for further study are included. (Author).
The report contains analyses of the radiation characteristics of grounded dielectric slabs fed by slots in a groundplane. It also contains experimental patterns of such configurations. In Addition, measured patterns of slots with parasitic radiating elements, and of combinations of slots, surface wave structures and parasitic elements, are included. It is shown that significant improvement of radiation at the horizon can be obtained in the E-plane and that significant broadening of the pattern can be obtained in the H-plane. Patterns of a linear array of slots in a groundplane with curved extensions, electronically scanned in the E-plane show that significant improvement in radiation at endfire can be obtained using a surface wave structure. Recommendations for further study are included. (Author).
In the high frequency world, the passive technologies required to realize RF and microwave functionality present distinctive challenges. SAW filters, dielectric resonators, MEMS, and waveguide do not have counterparts in the low frequency or digital environment. Even when conventional lumped components can be used in high frequency applications, their behavior does not resemble that observed at lower frequencies. RF and Microwave Passive and Active Technologies provides detailed information about a wide range of component technologies used in modern RF and microwave systems. Updated chapters include new material on such technologies as MEMS, device packaging, surface acoustic wave (SAW) filters, bipolar junction and heterojunction transistors, and high mobility electron transistors (HMETs). The book also features a completely rewritten section on wide bandgap transistors.
This book draws together three areas of work on plasma technologies: advanced efforts based on wave generated, high frequency plasmas, plasma assisted ion implantation, and electron beam generated plasma. It lays a foundation for the application of sources in industry and various research areas
This is a textbook for upper undergraduate and graduate courses on microwave engineering, written in a student-friendly manner with many diagrams and illustrations. It works towards developing a foundation for further study and research in the field. The book begins with a brief history of microwaves and introduction to core concepts of EM waves and wave guides. It covers equipment and concepts involved in the study and measurement of microwaves. The book also discuses microwave propagation in space, microwave antennae, and all aspects of RADAR. The book provides core pedagogy with chapter objectives, summaries, solved examples, and end-of-chapter exercises. The book also includes a bonus chapter which serves as a lab manual with 15 simple experiments detailed with proper circuits, precautions, sample readings, and quiz/viva questions for each experiment. This book will be useful to instructors and students alike.
In many applications, radio frequency (RF) signals need to be transmitted and processed without being digitalized. Optical fiber provides a transmission medium in which RF modulated optical carriers can be transmitted and distributed with very low loss, making it more efficient and less costly than conventional electronic systems. This volume presents a review of RF photonic components, transmission systems, and signal processing examples in optical fibers from leading academic, government, and industry scientists working in this field. It also introduces the reader to various related technologies such as direct modulation of laser sources, external modulation techniques, and detectors. The text is aimed at engineers and scientists engaged in the research and development of optical fibers and analog RF applications. With an emphasis on design, performance and practical application, this book will be of particular interest to those developing systems based on this technology.
This book presents and discusses alternatives to ordinary transmission lines for the design and implementation of advanced RF/microwave components in planar technology. This book is devoted to the analysis, study and applications of artificial transmission lines mostly implemented by means of a host line conveniently modified (e.g., with modulation of transverse dimensions, with etched patterns in the metallic layers, etc.) or with reactive loading, in order to achieve novel device functionalities, superior performance, and/or reduced size. The author begins with an introductory chapter dedicated to the fundamentals of planar transmission lines. Chapter 2 is focused on artificial transmission lines based on periodic structures (including non-uniform transmission lines and reactively-loaded lines), and provides a comprehensive analysis of the coupled mode theory. Chapters 3 and 4 are dedicated to artificial transmission lines inspired by metamaterials, or based on metamaterial concepts. These chapters include the main practical implementations of such lines and their circuit models, and a wide overview of their RF/microwave applications (including passive and active circuits and antennas). Chapter 5 focuses on reconfigurable devices based on tunable artificial lines, and on non-linear transmission lines. The chapter also introduces several materials and components to achieve tuning, including diode varactors, RF-MEMS, ferroelectrics, and liquid crystals. Finally, Chapter 6 covers other advanced transmission lines and wave guiding structures, such as electroinductive-/magnetoinductive-wave lines, common-mode suppressed balanced lines, lattice-network artificial lines, and substrate integrated waveguides. Artificial Transmission Lines for RF and Microwave Applications provides an in-depth analysis and discussion of artificial transmission lines, including design guidelines that can be useful to researchers, engineers and students.