This is a study of some of the combinatorial and topological properties of finite Coxeter complexes. The author begins by studying some of the general topological and algebraic properties of quotients of Coxeter complexes, and determines when they are pseudomanifolds (with or without boundary) and when they are Cohen-Macaulay or Gorenstein over a field. The paper also examines quotients of Coxeter complexes by cyclic subgroups generated by Coxeter elements.
The group of concordance classes of high dimensional homotopy spheres knotted in codimension two in the standard sphere has an intricate algebraic structure which this paper unravels. The first level of invariants is given by the classical Alexander polynomial. By means of a transfer construction, the integral Seifert matrices of knots whose Alexander polynomial is a power of a fixed irreducible polynomial are related to forms with the appropriate Hermitian symmetry on torsion free modules over an order in the algebraic number field determined by the Alexander polynomial. This group is then explicitly computed in terms of standard arithmetic invariants. In the symmetric case, this computation shows there are no elements of order four with an irreducible Alexander polynomial. Furthermore, the order is not necessarily Dedekind and non-projective modules can occur. The second level of invariants is given by constructing an exact sequence relating the global concordance group to the individual pieces described above. The integral concordance group is then computed by a localization exact sequence relating it to the rational group computed by J. Levine and a group of torsion linking forms.
We study Brakke's motion of varifolds by mean curvature in the special case that the initial surface is an integral cycle, giving a new existence proof by mean of elliptic regularization. Under a uniqueness hypothesis, we obtain a weakly continuous family of currents solving Brakke's motion. These currents remain within the corresponding level-set motion by mean curvature, as defined by Evans-Spruck and Chen-Giga-Goto. Now let [italic capital]T0 be the reduced boundary of a bounded set of finite perimeter in [italic capital]R[superscript italic]n. If the level-set motion of the support of [italic capital]T0 does not develop positive Lebesgue measure, then there corresponds a unique integral [italic]n-current [italic capital]T, [partial derivative/boundary/degree of a polynomial symbol][italic capital]T = [italic capital]T0, whose time-slices form a unit density Brakke motion. Using Brakke's regularity theorem, spt [italic capital]T is smooth [script capital]H[superscript italic]n-almost everywhere. In consequence, almost every level-set of the level-set flow is smooth [script capital]H[superscript italic]n-almost everywhere in space-time.
New methods are developed to describe prime ideals in skew polynomial rings [italic capital]S = [italic capital]R[[italic]y; [lowercase Greek]Tau, [lowercase Greek]Delta]], for automorphisms [lowercase Greek]Tau and [lowercase Greek]Tau-derivations [lowercase Greek]Delta] of a noetherian coefficient ring [italic capital]R.
This book uses a powerful new technique, tight closure, to provide insight into many different problems that were previously not recognized as related. The authors develop the notion of weakly Cohen-Macaulay rings or modules and prove some very general acyclicity theorems. These theorems are applied to the new theory of phantom homology, which uses tight closure techniques to show that certain elements in the homology of complexes must vanish when mapped to well-behaved rings. These ideas are used to strengthen various local homological conjectures. Initially, the authors develop the theory in positive characteristic, but it can be extended to characteristic 0 by the method of reduction to characteristic $p$. The book would be suitable for use in an advanced graduate course in commutative algebra.
Let [Fraktur lowercase]g be a complex simple Lie algebra of classical type, [italic capital]U([Fraktur lowercase]g) its enveloping algebra. We classify the completely prime maximal spectrum of [italic capital]U([Fraktur lowercase]g). We also construct some interesting algebra extensions of primitive quotients of [italic capital]U([Fraktur lowercase]g), and compute their Goldie ranks, lengths as bimodules, and characteristic cycles. Finally, we study the relevance of these algebras to D. Vogan's program of "quantizing" covers of nilpotent orbits [script]O in [Fraktur lowercase]g[superscript]*.
This book investigates the composition series of generalized principal series representations induced from a maximal cuspidal parabolic subgroup of a real reductive Lie group. Boe and Collingwood study when such representations are multiplicity-free (Vogan's Problem #3) and the problem of describing their composition factors in closed form. The results obtained are strikingly similar to those of Enright and Shelton for highest weight modules. Connections with two different flag variety decompositions are discussed.
Through classification of compact abelian group actions on semifinite injective factors, Jones and Takesaki introduced a notion of an action of a measured groupoid on a von Neumann algebra, which was proven to be an important tool for such an analysis. In this paper, elaborating their definition, the author introduces a new concept of a measured groupoid action that may fit more perfectly in the groupoid setting. The author also considers a notion of a coaction of a measured groupoid by showing the existence of a canonical "coproduct" on every groupoid von Neumann algebra.
Macdonald and Morris gave a series of constant term [italic]q-conjectures associated with root systems. Selberg evaluated a multivariable beta-type integral which plays an important role in the theory of constant term identities associated with root systems. K. Aomoto recently gave a simple and elegant proof of a generalization of Selberg's integral. Kadell extended this proof to treat Askey's conjectured [italic]q-Selberg integral, which was proved independently by Habsieger. We use a constant term formulation of Aomoto's argument to treat the [italic]q-Macdonald-Morris conjecture for the root system [italic capitals]BC[subscript italic]n. We show how to obtain the required functional equations using only the q-transportation theory for [italic capitals]BC[subscript italic]n.