Quinones are members of a class of aromatic compounds with two oxygen atoms bonded to the ring as carbonyl groups. This volume covers the role of quinines enzymes in cellular signalling and modulation of gene expression.*Coenzyme Q: Detection and Quinone Reductases*Plasma Membrane Quinone Reductases*Quinones, Cellular Signaling, and Modulation of Gene Expression
Quinones are members of a class of aromatic compounds with two oxygen atoms bonded to the ring as carbonyl groups. This volume covers more clinical aspects of quinines, such as anticancer properties, as well as their role in nutrition and in age-related diseases. - Mitochondrial Ubiquinone and Reductases - Anticancer Quinones and Quinone Oxido-Reductases - Quininone Reductases: Chemoprevention, Nutrition - Quinones and Age-Related Diseases
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 400 volumes (all of them still in print), the series contains much material still relevant today—truly an essential publication for researchers in all fields of life sciences. Methods in Enzymology is now available online at ScienceDirect — full-text online of volumes 1 onwards. For more information about the Elsevier Book Series on ScienceDirect Program, please visit: http://www.info.sciencedirect.com/bookseries/ This volume is the second of two planned volumes on the topic of globin and other nitric oxide-reactive proteins.
The critically acclaimed laboratory standard, Methods in Enzymology, is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. The series contains much material still relevant today - truly an essential publication for researchers in all fields of life sciences. Molecular Evolution Producing the Biochemical Data part B is a continuation of methods published in Part A (1993, volume 224). The work is a very methodological look at markers, templates, genomes, datasets and analyses used in studies of biological diversity.* One of the most highly respected publications in the field of biochemistry since 1955 * Frequently consulted, and praised by researchers and reviewers alike * Truly an essential publication for anyone in any field of the life sciences
This volume emphasizes the intracellular consequences of DNA damage, describing procedures for analysis of checkpoint responses, DNA repair in vivo, replication fork encounter of DNA damage, as well as biological methods for analysis of mutation production and chromosome rearrangements. It also describes molecular methods for analysis of a number of genome maintenance activities including DNA ligases, helicases, and single-strand binding proteins.*Part B of a 2-part series*Addresses DNA maintenance enzymes*Discusses damage signaling*Presents In vivo analysis of DNA repair*Covers mutation and chromosome rearrangements
Multicellular organisms must be able to adapt to cellular events to accommodate prevailing conditions. Sensory-response circuits operate by making use of a phosphorylation control mechanism known as the "two-component system." Sections in Two-Component Signaling Systems, Part B include: - Structural Approaches - Reconstitution of Heterogeneous Systems - Intracellular Methods and Assays - Genome-Wide Analyses of Two-Component Systems - Presents detailed protocols - Includes troubleshooting tips
Energetics of Biological Macromolecules, Part E focuses on methods related to allosteric enzymes and receptors, including fluorescent proves, spectroscopic methods and quantitative analysis as well as on cooperativity in protein folding. NMR and mass spectrometry methods are discussed. - Allosteric Enzymes and Receptors - Cooperativity in Protein Folding and Assembly
Liposomes are cellular structures made up of lipid molecules. Important as a cellular model in the study of basic biology, liposomes are also used in clinical applications such as drug delivery and virus studies. Liposomes Part D is a continuation of previous Methods in Enzymology Liposome volumes A, B, and C. - Covers antibody or ligand targeted liposomes; environment sensitive liposomes; liposomal oligonucleotides; liposomes in vivo
Modern DNA microarray technologies have evolved over the past 25 years to the point where it is now possible to take many million measurements from a single experiment. These two volumes, Parts A & B in the Methods in Enzymology series provide methods that will shepard any molecular biologist through the process of planning, performing, and publishing microarray results. Part A starts with an overview of a number of microarray platforms, both commercial and academically produced and includes wet bench protocols for performing traditional expression analysis and derivative techniques such as detection of transcription factor occupancy and chromatin status. Wet-bench protocols and troubleshooting techniques continue into Part B. These techniques are well rooted in traditional molecular biology and while they require traditional care, a researcher that can reproducibly generate beautiful Northern or Southern blots should have no difficulty generating beautiful array hybridizations. Data management is a more recent problem for most biologists. The bulk of Part B provides a range of techniques for data handling. This includes critical issues, from normalization within and between arrays, to uploading your results to the public repositories for array data, and how to integrate data from multiple sources. There are chapters in Part B for both the debutant and the expert bioinformatician. - Provides an overview of platforms - Includes experimental design and wet bench protocols - Presents statistical and data analysis methods, array databases, data visualization and meta analysis
The critically acclaimed laboratory standard, Methods in Enzymology, is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. The series contains much material still relevant today - truly an essential publication for researchers in all fields of life sciences. Nuclear Magnetic Resonance of Biological Macromolecules, Part C is written with a "hands-on" perspective. That is, practical applications with critical evaluations of methodologies and experimental considerations needed to design, execute, and interpret NMR experiments pertinent to biological molecules.* One of the most highly respected publications in the field of biochemistry since 1955 * Frequently consulted, and praised by researchers and reviewers alike * Truly an essential publication for anyone in any field of the life sciences