Rotations, Quaternions, and Double Groups

Rotations, Quaternions, and Double Groups

Author: Simon L. Altmann

Publisher: Courier Corporation

Published: 2013-04-09

Total Pages: 315

ISBN-13: 0486317730

DOWNLOAD EBOOK

This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems. Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the geometry, topology, and algebra of rotations. Some familiarity with the basics of group theory is assumed, but the text assists students in developing the requisite mathematical tools as necessary.


Visualizing Quaternions

Visualizing Quaternions

Author: Andrew J. Hanson

Publisher: Elsevier

Published: 2006-02-06

Total Pages: 530

ISBN-13: 0080474772

DOWNLOAD EBOOK

Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. - Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. - Covers both non-mathematical and mathematical approaches to quaternions.


The Geometry Of The Octonions

The Geometry Of The Octonions

Author: Tevian Dray

Publisher: World Scientific

Published: 2015-04-08

Total Pages: 229

ISBN-13: 9814401838

DOWNLOAD EBOOK

There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.


Hermann Günther Graßmann (1809-1877): Visionary Mathematician, Scientist and Neohumanist Scholar

Hermann Günther Graßmann (1809-1877): Visionary Mathematician, Scientist and Neohumanist Scholar

Author: Gert Schubring

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 325

ISBN-13: 9401587531

DOWNLOAD EBOOK

In this volume specialists in mathematics, physics, and linguistics present the first comprehensive analysis of the ideas and influence of Hermann G. Graßmann (1809-1877), the remarkable universalist whose work recast the foundations of these disciplines and shaped the course of their modern development.


Geometry and Topology

Geometry and Topology

Author: Miles Reid

Publisher: Cambridge University Press

Published: 2005-11-10

Total Pages: 218

ISBN-13: 9780521848893

DOWNLOAD EBOOK

Geometry aims to describe the world around us. It is central to many branches of mathematics and physics, and offers a whole range of views on the universe. This is an introduction to the ideas of geometry and includes generous helpings of simple explanations and examples. The book is based on many years teaching experience so is thoroughly class-tested, and as prerequisites are minimal, it is suited to newcomers to the subject. There are plenty of illustrations; chapters end with a collection of exercises, and solutions are available for teachers.


From c-Numbers to q-Numbers

From c-Numbers to q-Numbers

Author: Olivier Darrigol

Publisher: Univ of California Press

Published: 2023-11-15

Total Pages: 412

ISBN-13: 0520328280

DOWNLOAD EBOOK

This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1992.


Geometric Methods and Applications

Geometric Methods and Applications

Author: Jean Gallier

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 584

ISBN-13: 1461301378

DOWNLOAD EBOOK

As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.


Plato's Ghost

Plato's Ghost

Author: Jeremy Gray

Publisher: Princeton University Press

Published: 2008-09-02

Total Pages: 528

ISBN-13: 1400829046

DOWNLOAD EBOOK

Plato's Ghost is the first book to examine the development of mathematics from 1880 to 1920 as a modernist transformation similar to those in art, literature, and music. Jeremy Gray traces the growth of mathematical modernism from its roots in problem solving and theory to its interactions with physics, philosophy, theology, psychology, and ideas about real and artificial languages. He shows how mathematics was popularized, and explains how mathematical modernism not only gave expression to the work of mathematicians and the professional image they sought to create for themselves, but how modernism also introduced deeper and ultimately unanswerable questions. Plato's Ghost evokes Yeats's lament that any claim to worldly perfection inevitably is proven wrong by the philosopher's ghost; Gray demonstrates how modernist mathematicians believed they had advanced further than anyone before them, only to make more profound mistakes. He tells for the first time the story of these ambitious and brilliant mathematicians, including Richard Dedekind, Henri Lebesgue, Henri Poincaré, and many others. He describes the lively debates surrounding novel objects, definitions, and proofs in mathematics arising from the use of naïve set theory and the revived axiomatic method—debates that spilled over into contemporary arguments in philosophy and the sciences and drove an upsurge of popular writing on mathematics. And he looks at mathematics after World War I, including the foundational crisis and mathematical Platonism. Plato's Ghost is essential reading for mathematicians and historians, and will appeal to anyone interested in the development of modern mathematics.


Introduction to Geometric Computing

Introduction to Geometric Computing

Author: Sherif Ghali

Publisher: Springer Science & Business Media

Published: 2008-07-05

Total Pages: 338

ISBN-13: 1848001150

DOWNLOAD EBOOK

Computing is quickly making much of geometry intriguing not only for philosophers and mathematicians, but also for scientists and engineers. What is the core set of topics that a practitioner needs to study before embarking on the design and implementation of a geometric system in a specialized discipline? This book attempts to find the answer. Every programmer tackling a geometric computing problem encounters design decisions that need to be solved. This book reviews the geometric theory then applies it in an attempt to find that elusive "right" design.


Foundations of Geometric Algebra Computing

Foundations of Geometric Algebra Computing

Author: Dietmar Hildenbrand

Publisher: Springer Science & Business Media

Published: 2012-12-31

Total Pages: 217

ISBN-13: 3642317944

DOWNLOAD EBOOK

The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.