Quaternion Physics

Quaternion Physics

Author: Wardell Lindsay

Publisher: Lulu.com

Published: 2005-06-01

Total Pages: 52

ISBN-13: 141163537X

DOWNLOAD EBOOK

A collection of Writings on Physics and its advancement through Quaternion mathematics. Unifying Quantum and Relativity Theory through the Workfunction and the Cosmological Constant. The Quantum Constants are the Quantum Electric and Magnetic Charge and the speed of Light.


Quaternions, Clifford Algebras and Relativistic Physics

Quaternions, Clifford Algebras and Relativistic Physics

Author: Patrick R. Girard

Publisher: Springer Science & Business Media

Published: 2007-06-25

Total Pages: 177

ISBN-13: 3764377917

DOWNLOAD EBOOK

The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.


Quaternions and Rotation Sequences

Quaternions and Rotation Sequences

Author: J. B. Kuipers

Publisher: Princeton University Press

Published: 2020-03-31

Total Pages: 396

ISBN-13: 0691211701

DOWNLOAD EBOOK

Ever since the Irish mathematician William Rowan Hamilton introduced quaternions in the nineteenth century--a feat he celebrated by carving the founding equations into a stone bridge--mathematicians and engineers have been fascinated by these mathematical objects. Today, they are used in applications as various as describing the geometry of spacetime, guiding the Space Shuttle, and developing computer applications in virtual reality. In this book, J. B. Kuipers introduces quaternions for scientists and engineers who have not encountered them before and shows how they can be used in a variety of practical situations. The book is primarily an exposition of the quaternion, a 4-tuple, and its primary application in a rotation operator. But Kuipers also presents the more conventional and familiar 3 x 3 (9-element) matrix rotation operator. These parallel presentations allow the reader to judge which approaches are preferable for specific applications. The volume is divided into three main parts. The opening chapters present introductory material and establish the book's terminology and notation. The next part presents the mathematical properties of quaternions, including quaternion algebra and geometry. It includes more advanced special topics in spherical trigonometry, along with an introduction to quaternion calculus and perturbation theory, required in many situations involving dynamics and kinematics. In the final section, Kuipers discusses state-of-the-art applications. He presents a six degree-of-freedom electromagnetic position and orientation transducer and concludes by discussing the computer graphics necessary for the development of applications in virtual reality.


Division Algebras:

Division Algebras:

Author: G.M. Dixon

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 242

ISBN-13: 1475723156

DOWNLOAD EBOOK

I don't know who Gigerenzer is, but he wrote something very clever that I saw quoted in a popular glossy magazine: "Evolution has tuned the way we think to frequencies of co-occurances, as with the hunter who remembers the area where he has had the most success killing game." This sanguine thought explains my obsession with the division algebras. Every effort I have ever made to connect them to physics - to the design of reality - has succeeded, with my expectations often surpassed. Doubtless this strong statement is colored by a selective memory, but the kind of game I sought, and still seek, seems to frowst about this particular watering hole in droves. I settled down there some years ago and have never feIt like Ieaving. This book is about the beasts I selected for attention (if you will, to ren der this metaphor politically correct, let's say I was a nature photographer), and the kind of tools I had to develop to get the kind of shots Iwanted (the tools that I found there were for my taste overly abstract and theoretical). Half of thisbook is about these tools, and some applications thereof that should demonstrate their power. The rest is devoted to a demonstration of the intimate connection between the mathematics of the division algebras and the Standard Model of quarks and leptons with U(l) x SU(2) x SU(3) gauge fields, and the connection of this model to lO-dimensional spacetime implied by the mathematics.


Visualizing Quaternions

Visualizing Quaternions

Author: Andrew J. Hanson

Publisher: Elsevier

Published: 2006-02-06

Total Pages: 530

ISBN-13: 0080474772

DOWNLOAD EBOOK

Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. - Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. - Covers both non-mathematical and mathematical approaches to quaternions.


Quaternion Algebras

Quaternion Algebras

Author: John Voight

Publisher: Springer Nature

Published: 2021-06-28

Total Pages: 877

ISBN-13: 3030566943

DOWNLOAD EBOOK

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.


Quaternions and Cayley Numbers

Quaternions and Cayley Numbers

Author: J.P. Ward

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 252

ISBN-13: 9401157685

DOWNLOAD EBOOK

In essence, this text is written as a challenge to others, to discover significant uses for Cayley number algebra in physics. I freely admit that though the reading of some sections would benefit from previous experience of certain topics in physics - particularly relativity and electromagnetism - generally the mathematics is not sophisticated. In fact, the mathematically sophisticated reader, may well find that in many places, the rather deliberate progress too slow for their liking. This text had its origin in a 90-minute lecture on complex numbers given by the author to prospective university students in 1994. In my attempt to develop a novel approach to the subject matter I looked at complex numbers from an entirely geometric perspective and, no doubt in line with innumerable other mathematicians, re-traced steps first taken by Hamilton and others in the early years of the nineteenth century. I even enquired into the possibility of using an alternative multiplication rule for complex numbers (in which argzlz2 = argzl- argz2) other than the one which is normally accepted (argzlz2 = argzl + argz2). Of course, my alternative was rejected because it didn't lead to a 'product' which had properties that we now accept as fundamental (i. e.


Topics in Quaternion Linear Algebra

Topics in Quaternion Linear Algebra

Author: Leiba Rodman

Publisher: Princeton University Press

Published: 2014-08-24

Total Pages: 378

ISBN-13: 0691161852

DOWNLOAD EBOOK

Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.


Understanding Quaternions

Understanding Quaternions

Author: Peng Du

Publisher: Nova Science Publishers

Published: 2020

Total Pages: 197

ISBN-13: 9781536185539

DOWNLOAD EBOOK

"Quaternions are members of a noncommutative division algebra first invented by William Rowan Hamilton. They form an interesting algebra where each object contains 4 scalar variables, instead of Euler angles, which is useful to overcome the gimbal lock phenomenon when treating the rotation of objects. This book is about the mathematical basics and applications of quaternions. The first four chapters mainly concerns the mathematical theories, while the latter three chapters are related with three application aspects. It is expected to provide useful clues for researchers and engineers in the related area. In detail, this book is organized as follows: In Chapter 1, mathematical basics including the quaternion algebra and operations with quaternions, as well as the relationships of quaternions with other mathematical parameters and representations are demonstrated. In Chapter 2, how quaternions are formulated in Clifford Algebra, how it is used in explaining rotation group in symplectic vector space and parallel transformation in holonomic dynamics are presented. In Chapter 3, the wave equation for a spin 3/2 particle, described by 16-component vector-bispinor, is investigated in spherical coordinates. In Chapter 4, hyperbolic Lobachevsky and spherical Riemann models, parameterized coordinates with spherical and cylindric symmetry are studied. In Chapter 5, ship hydrodynamics with allowance of trim and sinkage is investigated and validated with experiments. In Chapter 6, the ballast flying phenomenon based on Discrete Discontinuous Analysis is presented. In Chapter 7, a numerical study is proposed to analyze the effect of the caisson sliding subjected to a hydrodynamic loading in the stability of the rear side of the rubble mound breakwater"--


Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry

Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry

Author: Roger Penrose

Publisher: Cambridge University Press

Published: 1984

Total Pages: 516

ISBN-13: 9780521347860

DOWNLOAD EBOOK

In the two volumes that comprise this work Roger Penrose and Wolfgang Rindler introduce the calculus of 2-spinors and the theory of twistors, and discuss in detail how these powerful and elegant methods may be used to elucidate the structure and properties of space-time. In volume 1, Two-spinor calculus and relativistic fields, the calculus of 2-spinors is introduced and developed. Volume 2, Spinor and twistor methods in space-time geometry, introduces the theory of twistors, and studies in detail how the theory of twistors and 2-spinors can be applied to the study of space-time. This work will be of great value to all those studying relativity, differential geometry, particle physics and quantum field theory from beginning graduate students to experts in these fields.