An Introduction to Nonlinear Boundary Value Problems

An Introduction to Nonlinear Boundary Value Problems

Author: Lakshmikantham

Publisher: Academic Press

Published: 1974-05-31

Total Pages: 399

ISBN-13: 0080956181

DOWNLOAD EBOOK

A book on an advanced level that exposes the reader to the fascinating field of differential equations and provides a ready access to an up-to-date state of this art is of immense value. This book presents a variety of techniques that are employed in the theory of nonlinear boundary value problems. For example, the following are discussed: - methods that involve differential inequalities; - shooting and angular function techniques; - functional analytic approaches; - topological methods.


Numerical Solution of Nonlinear Boundary Value Problems with Applications

Numerical Solution of Nonlinear Boundary Value Problems with Applications

Author: Milan Kubicek

Publisher: Courier Corporation

Published: 2008-01-01

Total Pages: 338

ISBN-13: 0486463001

DOWNLOAD EBOOK

A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.


Generalized Quasilinearization for Nonlinear Problems

Generalized Quasilinearization for Nonlinear Problems

Author: V. Lakshmikantham

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 287

ISBN-13: 1475728743

DOWNLOAD EBOOK

The book provides a systematic development of generalized quasilinearization indicating the notions and technical difficulties that are encountered in the unified approach. It enhances considerably the usefulness of the method of quasilinearization which has proved to be very effective in several areas of investigation and in applications. Further it includes the well-known monotone iterative technique as a special case. Audience: Researchers, industrial and engineering scientists.


Quasilinearization And The Identification Problem

Quasilinearization And The Identification Problem

Author: Richard Bellman

Publisher: World Scientific

Published: 1983-08-01

Total Pages: 226

ISBN-13: 9814635650

DOWNLOAD EBOOK

This volume presents an overview of the techniques of quasilinearization as they are applied to the problem of system identification. The quasilinear technique has inherent advantages in establishing the intricate interrelationships which exist in complex physical systems. Several advanced topics which are central to the quasilinear technique are discussed in this book. Problems on orbit determination, estimation of chemical rate constants, complex biomechanics of systems and analytical medicine are investigated, to demonstrate the power of the quasilinear method. The reader will have a good idea of the wide range and complexity of problems which can be solved.


Analytical Solution Methods for Boundary Value Problems

Analytical Solution Methods for Boundary Value Problems

Author: A.S. Yakimov

Publisher: Academic Press

Published: 2016-08-13

Total Pages: 202

ISBN-13: 0128043636

DOWNLOAD EBOOK

Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. - Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers - Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series - Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation - Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies - Features extensive revisions from the Russian original, with 115+ new pages of new textual content